Nothing
# RCI JT ------------------------------------------------------------------
clinisig_object <- cs_distribution(claus_2020, id, time, hamd, pre = 1, post = 4, reliability = 0.80)
# Variable for calculation
s_diff <- clinisig_object[["rci_results"]][["s_diff"]]
manual_results <- tibble::tibble(
pre = c(0, 100),
ymin = pre - qnorm(1 - 0.05/2) * s_diff,
ymax = pre + qnorm(1 - 0.05/2) * s_diff
)
test_that("RCI data for JT method plotting is calculated correctly", {
rci_data <- generate_plotting_band(clinisig_object)
expect_s3_class(rci_data, "tbl_df")
expect_equal(rci_data, manual_results)
})
# RCI GLN -----------------------------------------------------------------
clinisig_object <- cs_distribution(jacobson_1989, subject, time, gds, pre = "pre", reliability = 0.85, rci_method = "GLN")
# Get values for calculation
s_prediction <- clinisig_object[["rci_results"]][[1]]
reliability <- cs_get_reliability(clinisig_object)[[1]]
m_pre <- mean(cs_get_data(clinisig_object)[["pre"]])
# Manual calculation
manual_calculation <- tibble::tibble(
pre = c(0, 100),
ymin = reliability * pre - reliability * m_pre + m_pre + (-qnorm(1 - 0.05/2) * s_prediction),
ymax = reliability * pre - reliability * m_pre + m_pre + (qnorm(1 - 0.05/2) * s_prediction)
)
test_that("RCI data for GLN method plotting is calculated correctly", {
rci_data <- generate_plotting_band(clinisig_object)
expect_s3_class(rci_data, "tbl_df")
expect_equal(rci_data, manual_calculation)
})
# RCI HLL -----------------------------------------------------------------
clinisig_object <- cs_distribution(jacobson_1989, subject, time, gds, pre = "pre", reliability = 0.85, rci_method = "HLL")
# Get values for calculation
s_prediction <- clinisig_object[["rci_results"]][[1]]
m_post <- clinisig_object[["rci_results"]][["m_post"]]
reliability <- cs_get_reliability(clinisig_object)[[1]]
m_pre <- mean(cs_get_data(clinisig_object)[["pre"]])
# Manual calculation
manual_calculation <- tibble::tibble(
pre = c(0, 100),
ymin = -qnorm(1 - 0.05/2) * s_prediction + m_post + reliability * .data$pre - reliability * m_pre,
ymax = qnorm(1 - 0.05/2) * s_prediction + m_post + reliability * .data$pre - reliability * m_pre
)
test_that("RCI data for HLL method plotting is calculated correctly", {
rci_data <- generate_plotting_band(clinisig_object)
expect_s3_class(rci_data, "tbl_df")
expect_equal(rci_data, manual_calculation)
})
# RCI EN -----------------------------------------------------------------
clinisig_object <- cs_distribution(jacobson_1989, subject, time, gds, pre = "pre", reliability = 0.85, rci_method = "EN")
# Get values for calculation
se_measurement <- clinisig_object[["rci_results"]][["se_measurement"]]
reliability <- cs_get_reliability(clinisig_object)[[1]]
m_pre <- mean(cs_get_data(clinisig_object)[["pre"]])
# Manual calculation
manual_calculation <- tibble::tibble(
pre = c(0, 100),
pre_true = reliability * (pre - m_pre) + m_pre,
ymin = pre_true - qnorm(1 - 0.05/2) * se_measurement,
ymax = pre_true + qnorm(1 - 0.05/2) * se_measurement
)
test_that("RCI data for EN method plotting is calculated correctly", {
rci_data <- generate_plotting_band(clinisig_object)
expect_s3_class(rci_data, "tbl_df")
expect_equal(rci_data, manual_calculation)
})
# RCI NK -----------------------------------------------------------------
clinisig_object <- cs_distribution(jacobson_1989, subject, time, gds, pre = "pre", reliability = 0.85, reliability_post = 0.75, rci_method = "NK")
# Get values for calculation
m_pre <- mean(cs_get_data(clinisig_object)[["pre"]])
sd_pre <- sd(cs_get_data(clinisig_object)[["pre"]])
reliability_pre <- cs_get_reliability(clinisig_object)[[1]]
reliability_post <- cs_get_reliability(clinisig_object)[[2]]
# Manual calculation
manual_calculation <- tibble::tibble(
pre = c(0, 100),
ymin = -qnorm(1 - 0.05/2) * sqrt((reliability_pre^2 * sd_pre^2 * (1 - reliability_pre)) + (sd_pre^2 * (1 - reliability_post))) + (reliability_pre * (pre - m_pre) + m_pre),
ymax = qnorm(1 - 0.05/2) * sqrt((reliability_pre^2 * sd_pre^2 * (1 - reliability_pre)) + (sd_pre^2 * (1 - reliability_post))) + (reliability_pre * (pre - m_pre) + m_pre)
)
test_that("multiplication works", {
rci_data <- generate_plotting_band(clinisig_object)
expect_s3_class(rci_data, "tbl_df")
expect_equal(rci_data, manual_calculation)
})
# RCI HA -----------------------------------------------------------------
clinisig_object <- cs_distribution(jacobson_1989, subject, time, gds, pre = "pre", reliability = 0.85, rci_method = "HA")
# Get values for calculation
r_dd <- clinisig_object[["rci_results"]][["r_dd"]]
se_measurement <- clinisig_object[["rci_results"]][["se_measurement"]]
m_pre <- mean(cs_get_data(clinisig_object)[["pre"]])
m_post <- mean(cs_get_data(clinisig_object)[["post"]])
# Manual calculation
# RCI
manual_calculation <- tibble::tibble(
pre = c(0, 100),
ymin = (-qnorm(1 - 0.05) * sqrt(r_dd) * sqrt(2 * se_measurement^2) - (m_post - m_pre) * (1 - r_dd) + pre * r_dd) / r_dd,
ymax = (qnorm(1 - 0.05) * sqrt(r_dd) * sqrt(2 * se_measurement^2) - (m_post - m_pre) * (1 - r_dd) + pre * r_dd) / r_dd
)
test_that("RCI data for HA method plotting is calculated correctly", {
rci_data <- generate_plotting_band(clinisig_object)
expect_s3_class(rci_data, "tbl_df")
expect_equal(rci_data, manual_calculation)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.