Description Usage Arguments Value Author(s) References Examples
Cross-validation of clogitLasso
object
1 | cv.clogitLasso(objclogitLasso, K = 10, gpe = NULL)
|
objclogitLasso |
An objet of type |
K |
The number of folds used in cross validation |
gpe |
A list of group defined by the user. |
An object of type cv.clogitLasso
with the following components:
lambda |
Vector of regularisation parameter |
mean_cv |
vector of mean deviances for each value of the regularisation parameter |
beta |
Vector of estimated coefficients with optimal regularisation parameter |
lambdaopt |
Optimal regularisation parameter |
Marta Avalos, Helene Pouyes, Marius Kwemou and Binbin Xu
Avalos, M., Pouyes, H., Grandvalet, Y., Orriols, L., & Lagarde, E. (2015). Sparse conditional logistic regression for analyzing large-scale matched data from epidemiological studies: a simple algorithm. BMC bioinformatics, 16(6), S1. doi: 10.1186/1471-2105-16-S6-S1.
1 2 3 4 5 6 7 8 9 10 11 12 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.