inst/doc/examplesmrg.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  out.width = "100%",
  fig.asp = 0.5,
  dpi = 120
)

## ----setup, message=FALSE, warning=FALSE--------------------------------------
# Load the clugenr library
library(clugenr)

# Load functions for plotting examples
source("plot_examples_2d.R", local = knitr::knit_global())

# Keep examples reproducible in newer R versions
RNGversion("3.6.0")

## -----------------------------------------------------------------------------
seed1 <- 4444
seed2 <- 5555

## -----------------------------------------------------------------------------
e090 <- clugen(2, 5, 1000, c(1, 1), pi / 12, c(20, 20), 14, 1.2, 1.5, seed = seed1,
               proj_dist_fn = "unif", point_dist_fn = "n")
e091 <- clugen(2, 3, 1500, c(1, 0), 0.05, c(20, 20), 0, 0, 4, seed = seed2,
               point_dist_fn = "n", cluster_offset = c(20, 0))
e092 <- clumerge(e090, e091)

## -----------------------------------------------------------------------------
plot_examples_2d(list(e = e090, t = "e090: data set 1"),
                 list(e = e091, t = "e091: data set 2"),
                 list(e = e092, t = "e092: merged data sets"))

## -----------------------------------------------------------------------------
e093 <- clumerge(e090, e091, clusters_field = NA)

## -----------------------------------------------------------------------------
plot_examples_2d(list(e = e090, t = "e090: data set 1"),
                 list(e = e091, t = "e091: data set 2"),
                 list(e = e093, t = "e093: merged data sets"),
                 palette = "set2")

## -----------------------------------------------------------------------------
set.seed(333)

e094 <- list(points = matrix(120 * runif(2 * 500) - 60, ncol = 2),
             clusters = factor(rep(9L, 500)))     # Assign noise to cluster 9
e095 <- clumerge(e094, e092, clusters_field = NA) # and keep it 9 when merging

## -----------------------------------------------------------------------------
plot_examples_2d(list(e = e092, t = "e092: original merged data sets"),
                 list(e = e094, t = "e094: random uniform noise"),
                 list(e = e095, t = "e095: data sets with noise"),
                 palette = "set2", pmargin = -0.1)

## -----------------------------------------------------------------------------
set.seed(888)
spc <- prcomp(swiss)
e096 <- list(points = spc$x[, 1:2], clusters = factor(rep(4L, dim(spc$x)[1])))
e097 <- clugen(2, 3, 50, c(-0.3, 1), 0., c(0, 0), 0, 0, 3,
               proj_dist_fn = "unif", clusizes_fn = c(20, 6, 25),
               clucenters_fn = matrix(c(-58, -5, 10, -40, 38, 0),
                                      byrow = TRUE, ncol = 2),
               angle_deltas_fn = c(0.02, -0.03, 0.1),
               llengths_fn = c(55, 100, 60))
e098 <- clumerge(e096, e097, clusters_field = NA)

## -----------------------------------------------------------------------------
plot_examples_2d(list(e = e096, t = "e096: swiss PCA"),
                 list(e = e097, t = "e097: clugen-generated"),
                 list(e = e098, t = "e098: merged"),
                 palette = "seaborn")

## -----------------------------------------------------------------------------
e099 <- append(e096, list(hclusters = factor(rep(1L, dim(spc$x)[1]))))
e100 <- append(e097, list(hclusters = factor(rep(2L, length(e097$clusters)))))
e101 <- clumerge(e099, e100, fields = "points", clusters_field = "hclusters")

## -----------------------------------------------------------------------------
plot_examples_2d(list(e = e099, t = "e099: swiss PCA (1 cluster)"),
                 list(e = e100, t = "e100: clugen-generated (1 cluster)"),
                 list(e = e101, t = "e101: merged (2 clusters)"),
                 clusters_field = "hclusters",
                 palette = "seaborn")

## -----------------------------------------------------------------------------
# For display purposes, assign all points in merged data to a single cluster
e102 <- list(points = e101$points, hclusters = factor(rep(1L, length(e101$hclusters))))

# Perform hierachical clustering with Manhattan distance, complete linkage and
# assuming 3 clusters
clusts <- cutree(hclust(dist(e101$points, method = "manhattan")), 3)

# Create data set with merged points and new cluster labels
e103 <- list(points = e101$points, hclusters = factor(clusts))

## -----------------------------------------------------------------------------
plot_examples_2d(list(e = e101, t = "e101: merged (2 clusters)"),
                 list(e = e102, t = "e102: merged (1 cluster)"),
                 list(e = e103, t = "e103: after clustering (3 clusters)"),
                 clusters_field = "hclusters",
                 palette = "seaborn")

Try the clugenr package in your browser

Any scripts or data that you put into this service are public.

clugenr documentation built on Aug. 8, 2025, 6:05 p.m.