nearestNeighborSepVal | R Documentation |
Separation information matrix containing the nearest neighbor and farthest neighbor of each cluster.
nearestNeighborSepVal(sepValMat)
sepValMat |
a |
This function returns a separation information matrix containing K
rows and
the following six columns, where K
is the number of clusters.
Column 1: |
Labels of clusters ( |
Column 2: |
Labels of the corresponding nearest neighbors. |
Column 3: |
Separation indices of the clusters to their nearest neighboring clusters. |
Column 4: |
Labels of the corresponding farthest neighboring clusters. |
Column 5: |
Separation indices of the clusters to their farthest neighbors. |
Column 6: |
Median separation indices of the clusters to their neighbors. |
Weiliang Qiu weiliang.qiu@gmail.com
Harry Joe harry@stat.ubc.ca
Qiu, W.-L. and Joe, H. (2006a) Generation of Random Clusters with Specified Degree of Separaion. Journal of Classification, 23(2), 315-334.
Qiu, W.-L. and Joe, H. (2006b) Separation Index and Partial Membership for Clustering. Computational Statistics and Data Analysis, 50, 585–603.
n1 <- 50
mu1 <- c(0, 0)
Sigma1 <- matrix(c(2, 1, 1, 5), 2, 2)
n2 <- 100
mu2 <- c(10, 0)
Sigma2 <- matrix(c(5, -1, -1, 2), 2, 2)
n3 <- 30
mu3 <- c(10, 10)
Sigma3 <- matrix(c(3, 1.5, 1.5, 1), 2, 2)
projDir <- c(1, 0)
muMat <- rbind(mu1, mu2, mu3)
SigmaArray <- array(0, c(2, 2, 3))
SigmaArray[, , 1] <- Sigma1
SigmaArray[, , 2] <- Sigma2
SigmaArray[, , 3] <- Sigma3
tmp <- getSepProjTheory(
muMat = muMat,
SigmaArray = SigmaArray,
iniProjDirMethod="SL")
sepValMat <- tmp$sepValMat
nearestNeighborSepVal(sepValMat = sepValMat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.