sepIndex | R Documentation |
Measure the magnitude of the gap or sparse area between a pair of clusters (or cluster distributions) along the specified projection direction.
sepIndexTheory(
projDir,
mu1,
Sigma1,
mu2,
Sigma2,
alpha = 0.05,
eps = 1.0e-10,
quiet = TRUE)
sepIndexData(
projDir,
y1,
y2,
alpha = 0.05,
eps = 1.0e-10,
quiet = TRUE)
projDir |
Projection direction. |
mu1 |
Mean vector of cluster 1. |
Sigma1 |
Covariance matrix of cluster 1. |
mu2 |
Mean vector of cluster 2. |
Sigma2 |
Covariance matrix of cluster 2. |
y1 |
Data matrix of cluster 1. Rows correspond to observations. Columns correspond to variables. |
y2 |
Data matrix of cluster 2. Rows correspond to observations. Columns correspond to variables. |
alpha |
Tuning parameter reflecting the percentage in the two
tails of a projected cluster that might be outlying.
We set |
eps |
Convergence threshold. A small positive number to check if a quantitiy |
quiet |
A flag to switch on/off the outputs of intermediate results and/or possible warning messages. The default value is |
The value of the separation index defined in Qiu and Joe (2006).
Weiliang Qiu weiliang.qiu@gmail.com
Harry Joe harry@stat.ubc.ca
Qiu, W.-L. and Joe, H. (2006) Separation Index and Partial Membership for Clustering. Computational Statistics and Data Analysis, 50, 585–603.
n1<-50
mu1<-c(0,0)
Sigma1<-matrix(c(2,1,1,5),2,2)
n2<-100
mu2<-c(10,0)
Sigma2<-matrix(c(5,-1,-1,2),2,2)
projDir<-c(1, 0)
sepIndexTheory(projDir, mu1, Sigma1, mu2, Sigma2)
library(MASS)
y1 <- mvrnorm(n1, mu1, Sigma1)
y2 <- mvrnorm(n2, mu2, Sigma2)
sepIndexData(
projDir = projDir,
y1 = y1,
y2 = y2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.