clusterSim: Searching for Optimal Clustering Procedure for a Data Set
Version 0.45-2

Distance measures (GDM1, GDM2, Sokal-Michener, Bray-Curtis, for symbolic interval-valued data), cluster quality indices (Calinski-Harabasz, Baker-Hubert, Hubert-Levine, Silhouette, Krzanowski-Lai, Hartigan, Gap, Davies-Bouldin), data normalization formulas, data generation (typical and non-typical data), HINoV method, replication analysis, linear ordering methods, spectral clustering, agreement indices between two partitions, plot functions (for categorical and symbolic interval-valued data).

Getting started

Package details

AuthorMarek Walesiak <marek.walesiak@ue.wroc.pl> Andrzej Dudek <andrzej.dudek@ue.wroc.pl>
Date of publication2017-03-31 09:55:16 UTC
MaintainerAndrzej Dudek <andrzej.dudek@ue.wroc.pl>
LicenseGPL (>= 2)
Version0.45-2
URL http://keii.ue.wroc.pl/clusterSim
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("clusterSim")

Try the clusterSim package in your browser

Any scripts or data that you put into this service are public.

clusterSim documentation built on May 29, 2017, 8:44 p.m.