data.Normalization | R Documentation |
Types of variable (column) and object (row) normalization formulas
data.Normalization (x,type="n0",normalization="column",...)
x |
vector, matrix or dataset |
type |
type of normalization: |
n0 - without normalization
n1 - standardization ((x-mean)/sd)
n2 - positional standardization ((x-median)/mad)
n3 - unitization ((x-mean)/range)
n3a - positional unitization ((x-median)/range)
n4 - unitization with zero minimum ((x-min)/range)
n5 - normalization in range <-1,1> ((x-mean)/max(abs(x-mean)))
n5a - positional normalization in range <-1,1> ((x-median)/max(abs(x-median)))
n6 - quotient transformation (x/sd)
n6a - positional quotient transformation (x/mad)
n7 - quotient transformation (x/range)
n8 - quotient transformation (x/max)
n9 - quotient transformation (x/mean)
n9a - positional quotient transformation (x/median)
n10 - quotient transformation (x/sum)
n11 - quotient transformation (x/sqrt(SSQ))
n12 - normalization ((x-mean)/sqrt(sum((x-mean)^2)))
n12a - positional normalization ((x-median)/sqrt(sum((x-median)^2)))
n13 - normalization with zero being the central point ((x-midrange)/(range/2))
normalization |
"column" - normalization by variable, "row" - normalization by object |
... |
arguments passed to |
See file ../doc/dataNormalization_details.pdf for further details
Thanks Wolfgang Lederer (<wolfgang.lederer@gmail.com>) for reporting n4/vector error
Normalized data The numeric shifts and scalings used (if any) are returned as attributes "normalized:shift" and "normalized:scale"
Marek Walesiak marek.walesiak@ue.wroc.pl, Andrzej Dudek andrzej.dudek@ue.wroc.pl
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland
Anderberg, M.R. (1973), Cluster analysis for applications, Academic Press, New York, San Francisco, London. ISBN 9780120576500.
Gatnar, E., Walesiak, M. (Eds.) (2004), Metody statystycznej analizy wielowymiarowej w badaniach marketingowych [Multivariate statistical analysis methods in marketing research], Wydawnictwo AE, Wroclaw, 35-38.
Jajuga, K., Walesiak, M. (2000), Standardisation of data set under different measurement scales, In: R. Decker, W. Gaul (Eds.), Classification and information processing at the turn of the millennium, Springer-Verlag, Berlin, Heidelberg, 105-112. Available at: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-3-642-57280-7_11")}.
Milligan, G.W., Cooper, M.C. (1988), A study of standardization of variables in cluster analysis, "Journal of Classification", vol. 5, 181-204. Available at: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/BF01897163")}.
Mlodak, A. (2006), Analiza taksonomiczna w statystyce regionalnej, Difin, Warszawa. ISBN 83-7251-605-7.
Walesiak, M. (2014), Przeglad formul normalizacji wartosci zmiennych oraz ich wlasnosci w statystycznej analizie wielowymiarowej [Data normalization in multivariate data analysis. An overview and properties], "Przeglad Statystyczny" ("Statistical Review"), vol. 61, no. 4, 363-372. Available at: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.5604/01.3001.0016.1740")}.
cluster.Sim
library(clusterSim)
data(data_ratio)
z1 <- data.Normalization(data_ratio,type="n1",normalization="column",na.rm=FALSE)
z2 <- data.Normalization(data_ratio,type="n10",normalization="row",na.rm=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.