Nothing
"Norm.hclustering" <-
function(M, dim, c=3, hmethod="average", n=50, scale=TRUE, seed=100, distance="euclidean") {
cl <- list();
tr <- list();
set.seed(seed);
for (i in 1:n) {
P.M<- norm.random.projection(d=dim, M, scaling=scale);
if (distance == "euclidean")
d <- stats::dist (t(P.M))
else if (distance == "pearson")
d <- stats::as.dist(1 - stats::cor(P.M))
else
stop("distance measure not implemented");
tr[i] <- list(stats::hclust(d, method = hmethod));
plot(tr[[i]], main="");
cl[i] <- list(stats::rect.hclust(tr[[i]], k = c));
}
l <- list(cluster=cl, tree=tr);
l
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.