# rowops: Elementary row operations In cmna: Computational Methods for Numerical Analysis

## Description

These are elementary operations for a matrix. They do not presume a square matrix and will work on any matrix. They use R's internal row addressing to function.

## Usage

 ```1 2 3 4 5``` ```swaprows(m, row1, row2) replacerow(m, row1, row2, k) scalerow(m, row, k) ```

## Arguments

 `m` a matrix `row1` a source row `row2` a destination row `k` a scaling factor `row` a row to modify

## Details

`replacerow` replaces one row with the sum of itself and the multiple of another row. `swaprows` swap two rows in the matrix. `scalerow` scales all enteries in a row by a constant.

## Value

the modified matrix

Other linear: `choleskymatrix`, `detmatrix`, `gdls`, `invmatrix`, `iterativematrix`, `lumatrix`, `refmatrix`, `tridiagmatrix`, `vecnorm`
 ```1 2 3 4 5``` ```n <- 5 A <- matrix(sample.int(10, n^2, TRUE) - 1, n) A <- swaprows(A, 2, 4) A <- replacerow(A, 1, 3, 2) A <- scalerow(A, 5, 10) ```