# simp38: Simpson's 3/8 rule In cmna: Computational Methods for Numerical Analysis

## Description

Use Simpson's 3/8 rule to integrate a function

## Usage

 `1` ```simp38(f, a, b, m = 100) ```

## Arguments

 `f` function to integrate `a` the a-bound of integration `b` the b-bound of integration `m` the number of subintervals to calculate

## Details

The `simp38` function uses Simpson's 3/8 rule to calculate the integral of the function `f` over the interval from `a` to `b`. The parameter `m` sets the number of intervals to use when evaluating. Additional options are passed to the function `f` when evaluating.

## Value

the value of the integral

Other integration: `adaptint`, `gaussint`, `giniquintile`, `mcint`, `midpt`, `revolution-solid`, `romberg`, `simp`, `trap`
Other newton-cotes: `adaptint`, `giniquintile`, `midpt`, `romberg`, `simp`, `trap`
 ```1 2 3 4``` ```f <- function(x) { sin(x)^2 + log(x) } simp38(f, 1, 10, m = 10) simp38(f, 1, 10, m = 100) simp38(f, 1, 10, m = 1000) ```