Description Usage Arguments Details Value See Also Examples
Use Simpson's 3/8 rule to integrate a function
1 | simp38(f, a, b, m = 100)
|
f |
function to integrate |
a |
the a-bound of integration |
b |
the b-bound of integration |
m |
the number of subintervals to calculate |
The simp38 function uses Simpson's 3/8 rule to calculate the
integral of the function f over the interval from a
to b. The parameter m sets the number of intervals
to use when evaluating. Additional options are passed to the
function f when evaluating.
the value of the integral
Other integration:
adaptint(),
gaussint(),
giniquintile(),
mcint(),
midpt(),
revolution-solid,
romberg(),
simp(),
trap()
Other newton-cotes:
adaptint(),
giniquintile(),
midpt(),
romberg(),
simp(),
trap()
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.