Nothing
#' @name coco2
#' @title Type 2 Rank correlation coefficient based test on positive dependence through stochastic ordering
#' @description This function evaluates the assumption of positive dependence through stochastic ordering in multiple comparison procedures
#' @param cordx a numeric vector
#' @param cordy a numeric vector
#' @param alpha a number of significance level
#' @param Rboot a number of bootstrap replicates
#' @param seed a number of the seed of random number generator
#' @return a vector of three numbers: a lower bound of one-sided confidence interval \code{lower_bound}, a test statistic \code{estimation}, and an indicator whether the PDS condition holds or not \code{PDS_assumption}
#' @export
#' @importFrom boot boot
#' @importFrom boot boot.ci
#' @importFrom stats cor
#' @author Jiangtao Gou
#' @author Fengqing Zhang
#' @details R package \code{boot} is included for computing nonparametric bootstrap confidence intervals
#' @references
#' Gou, J., Wu, K. and Chen, O. Y. (2024). Rank correlation coefficient based tests on positive dependence through stochastic ordering with application in cancer studies, Technical Report.
#' Gou, J. (2023). On dependence assumption in p-value based multiple test procedures. \emph{Journal of Biopharmaceutical Statistics}, 33(5), 596-610.
#' Gou, J. (2024). A test of the dependence assumptions for the Simes-test-based multiple test procedures. \emph{Statistics in Biopharmaceutical Research}, 16(1), 1-7.
#' @examples
#' set.seed(123)
#' cordx <- rnorm(40)
#' cordy <- rnorm(40)
#' coco2(cordx, cordy)
#'
coco2 <- function(cordx, cordy, alpha = 0.05, Rboot = 100, seed = 1) {
set.seed(seed = seed)
#
mytab <- matrix(c(cordx, cordy), ncol = 2)
#
sampleStat2 <- function(x, d) {
sampletau <- stats::cor(x[d,1], x[d,2], method = "kendall")
samplerho <- stats::cor(x[d,1], x[d,2], method = "spearman")
samplestat2 <- (1 + 3*sampletau)/(1+samplerho)^2
return(samplestat2)
}
#
tryCatch({
bootresult2 <- boot::boot(mytab, sampleStat2, R = Rboot)
ciresult2 <- boot::boot.ci(bootresult2, conf = 1 - 2*alpha, type = "bca")
SK2lb <- ciresult2$bca[4]
SK2est <- ciresult2$t0
if (SK2lb > 1) {
SK2conclusion <- FALSE
} else {
SK2conclusion <- TRUE
}
}, error = function(e){}) # End of tryCatch
return(list(lower_bound = SK2lb,
estimation = SK2est,
PDS_assumption = SK2conclusion))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.