ci_f_ncp | R Documentation |
Based on the inversion principle, parametric CIs for the non-centrality parameter
(NCP) Delta of the F distribution are calculated.
To keep the input interface simple, we do not provide bootstrap CIs here.
A positive lower (1-alpha)*100%-confidence limit for the NCP goes hand-in-hand with
a significant F test at level alpha.
According to ?stats::pf
, the results might be unreliable for very large F values.
ci_f_ncp(x, df1 = NULL, df2 = NULL, probs = c(0.025, 0.975))
x |
The result of |
df1 |
The numerator degree of freedom (df), e.g. the number of parameters
(including the intercept) of a linear regression.
Only used if |
df2 |
The denominator df, e.g. n - df1 - 1 in a linear regression.
Only used if |
probs |
Lower and upper probabilities, by default c(0.025, 0.975). |
An object of class "cint" containing these components:
parameter
: Parameter specification.
interval
: CI for the parameter.
estimate
: Parameter estimate.
probs
: Lower and upper probabilities.
type
: Type of interval.
info
: Additional description.
Smithson, M. (2003). Confidence intervals. Series: Quantitative Applications in the Social Sciences. New York, NY: Sage Publications.
ci_rsquared
.
fit <- stats::lm(Sepal.Length ~ ., data = iris)
ci_f_ncp(fit)
ci_f_ncp(fit, probs = c(0.05, 1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.