demo/replication_kruijswijk_2018/3_offline_bootstrapped_persuasion.R

library(contextual)
library(here)
library(data.table)

setwd(here::here("demo","replication_kruijswijk_2018"))

source("./policy_pooled_egreedy.R")
source("./policy_pooled_ucb.R")
source("./bandit_bootstrapped_replay.R")


simulations <- 100
horizon     <- 570000

csv_url     <- "http://d1ie9wlkzugsxr.cloudfront.net/data_persuasion_api/persuasion_api_simple.csv"
# If csv file is not yet available, use csv_url instead
csv         <- "./persuasion_api_simple.csv"
data        <- fread(csv, nrows = horizon)

tab <- table(data$user)
data <- data[data$user %in% names(tab)[tab>5 & tab<50],]
data$user <- as.numeric(as.factor(data$user))

users       <- data[, .N, keyby = user]

max_repeat  <- max(users$N)
n_users     <- length(users$user)

print(max_repeat)
print(n_users)

# table(data$choice)
# 1      2      3      4
# 142628 142860 142439 142073

##################### Bandit ###########################

bandit      <- DependentObservationsBootstrappedBandit$new(data, 4)

##################### Policies #########################

agents      <- list(Agent$new(UnpooledEgreedyPolicy$new(epsilon = 0.1, n_subjects = n_users), bandit),
                    Agent$new(PooledEgreedyPolicy$new(epsilon = 0.1), bandit),
                    Agent$new(RandomPolicy$new(), bandit),
                    Agent$new(PartiallyBBPooledEgreedyPolicy$new(epsilon = 0.1, n_subjects = n_users), bandit),
                    Agent$new(PartiallyPooledEgreedyPolicy$new(epsilon = 0.1, n_subjects = n_users), bandit))

history     <- Simulator$new(agents = agents, horizon = horizon, do_parallel = TRUE,
                             simulations = simulations, save_interval = 50, include_packages = c("plyr"))$run()

history$save("emp_eg_100reps.RData")
history$clear_data_table()
rm(agents,history)

plot(history, type = "cumulative", regret = FALSE, rate = TRUE, ylim = c(0.01,0.0375), legend_border = FALSE, legend_position = "topright", ylab = "Click-through rate", legend_labels = c("No pooling", "Complete pooling", "Random", "Partial BB Pooling", "Partial Pooling"))

agents      <- list(Agent$new(UnpooledUCBPolicy$new( n_subjects = n_users), bandit),
                    Agent$new(PooledUCBPolicy$new(), bandit),
                    Agent$new(RandomPolicy$new(), bandit),
                    Agent$new(PartiallyBBPooledUCBPolicy$new( n_subjects = n_users), bandit),
                    Agent$new(PartiallyPooledUCBPolicy$new(n_subjects = n_users), bandit)
)

history     <- Simulator$new(agents = agents, horizon = horizon, do_parallel = TRUE,
                             simulations = simulations, save_interval = 50, include_packages = c("plyr"))$run()
history$save("emp_ucb_100reps.RData")

plot(history, type = "cumulative", regret = FALSE, rate = TRUE, ylim = c(0.01,0.0375), legend_border = FALSE, legend_position = "topright", ylab = "Click-through rate", legend_labels = c("No pooling", "Complete pooling", "Random", "Partial BB Pooling", "Partial Pooling"))

Try the contextual package in your browser

Any scripts or data that you put into this service are public.

contextual documentation built on July 26, 2020, 1:06 a.m.