Nothing
#' @title The inverse hyperbolic sine confidence interval for the odds ratio
#' @description The inverse hyperbolic sine confidence interval for the odds ratio
#' @description Described in Chapter 4 "The 2x2 Table"
#' @param n the observed counts (a 2x2 matrix)
#' @param alpha the nominal level, e.g. 0.05 for 95% CIs
#' @examples
#' Inv_sinh_CI_OR_2x2(lampasona_2013)
#' Inv_sinh_CI_OR_2x2(ritland_2007)
#' @export
#' @return An object of the [contingencytables_result] class,
#' basically a subclass of [base::list()]. Use the [utils::str()] function
#' to see the specific elements returned.
Inv_sinh_CI_OR_2x2 <- function(n, alpha = 0.05) {
validateArguments(mget(ls()))
# Estimate of the odds ratio (thetahat)
estimate <- n[1, 1] * n[2, 2] / (n[1, 2] * n[2, 1])
# The upper alpha / 2 percentile of the standard normal distribution
z <- qnorm(1 - alpha / 2, 0, 1)
# Calculate the confidence limits
tmp <- asinh(0.5 * z * sqrt(1 / n[1, 1] + 1 / n[1, 2] + 1 / n[2, 1] + 1 / n[2, 2]))
L <- exp(log(estimate) - 2 * tmp)
U <- exp(log(estimate) + 2 * tmp)
# Fix zero cell cases
if (n[1, 1] == 0) {
U <- (z^2) * n[2, 2] / (n[1, 2] * n[2, 1])
}
if (n[2, 2] == 0) {
U <- n[1, 1] * (z^2) / (n[1, 2] * n[2, 1])
}
if (n[1, 1] == 0 && n[2, 2] == 0) {
U <- ((z^2) * (z^2)) / (n[1, 2] * n[2, 1])
}
if (n[1, 2] == 0) {
L <- n[1, 1] * n[2, 2] / ((z^2) * n[2, 1])
}
if (n[2, 1] == 0) {
L <- n[1, 1] * n[2, 2] / (n[1, 2] * (z^2))
}
if (n[1, 2] == 0 && n[2, 1] == 0) {
L <- n[1, 1] * n[2, 2] / ((z^2) * (z^2))
}
return(contingencytables_result(
list("lower" = L, "upper" = U, "estimate" = estimate),
sprintf(
"The inverse sinh CI: estimate = %6.4f (%g%% CI %6.4f to %6.4f)",
estimate, 100 * (1 - alpha), L, U
)
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.