Nothing
#' @title The Koopman asymptotic score confidence interval for the ratio of probabilities
#' @description The Koopman asymptotic score confidence interval for the ratio of probabilities
#' @note This versions uses the score test statistic of the Miettinen-Nurminen
#' interval without the variance correction term.
#' @description Described in Chapter 4 "The 2x2 Table"
#' @param n the observed counts (a 2x2 matrix)
#' @param alpha the nominal level, e.g. 0.05 for 95% CIs
#' @examples
#' Koopman_asymptotic_score_CI_2x2(perondi_2004)
#' Koopman_asymptotic_score_CI_2x2(ritland_2007)
#' @export
#' @return An object of the [contingencytables_result] class,
#' basically a subclass of [base::list()]. Use the [utils::str()] function
#' to see the specific elements returned.
Koopman_asymptotic_score_CI_2x2 <- function(n, alpha = 0.05) {
validateArguments(mget(ls()))
n11 <- n[1, 1]
n21 <- n[2, 1]
n1p <- n[1, 1] + n[1, 2]
n2p <- n[2, 1] + n[2, 2]
# Estimates of the two probabilities of success
pi1hat <- n[1, 1] / n1p
pi2hat <- n[2, 1] / n2p
# Estimate of the ratio of probabilities (phihat)
estimate <- pi1hat / pi2hat
# Options for Matlab's fzero command
tol <- 0.0000001
phi0 <- 0.00001
phi1 <- 100000
# Lower CI limit
if (n[1, 1] == 0 && n[2, 1] == 0) {
L <- 0
} else if (is.na(estimate) || estimate == Inf) {
L <- uniroot(
calculate_limit_lower, c(phi0, phi1),
n11 = n11, n21 = n21,
n1p = n1p, n2p = n2p, pi1hat = pi1hat, pi2hat = pi2hat, alpha = alpha, tol = tol
)$root
} else if (estimate == 0) {
L <- 0
} else {
L <- uniroot(
calculate_limit_lower, c(phi0, estimate),
n11 = n11, n21 = n21,
n1p = n1p, n2p = n2p, pi1hat = pi1hat, pi2hat = pi2hat, alpha = alpha, tol = tol
)$root
}
# Upper CI limit
if (is.na(estimate) || estimate == Inf) {
U <- Inf
} else if (estimate == 0) {
U <- uniroot(
calculate_limit_upper, c(phi0, phi1),
n11 = n11, n21 = n21,
n1p = n1p, n2p = n2p, pi1hat = pi1hat, pi2hat = pi2hat, alpha = alpha, tol = tol
)$root
} else {
U <- uniroot(
calculate_limit_upper, c(estimate, phi1),
n11 = n11, n21 = n21,
n1p = n1p, n2p = n2p, pi1hat = pi1hat, pi2hat = pi2hat, alpha = alpha, tol = tol
)$root
}
return(
contingencytables_result(
list("lower" = L, "upper" = U, "estimate" = estimate),
sprintf(
"Koopman asymptotic score CI: estimate = %6.4f (%g%% CI %6.4f to %6.4f)",
estimate, 100 * (1 - alpha), L, U
)
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.