R/corrRect.hclust.R

Defines functions corrRect.hclust

Documented in corrRect.hclust

#' Draw rectangles on the correlation matrix graph.
#'
#' Draw rectangles on the correlation matrix graph based on hierarchical cluster
#' (\code{\link{hclust}}).
#'
#' @param corr Correlation matrix for function \code{corrRect.hclust}. It use
#'   \code{1-corr} as dist in  hierarchical clustering (\code{\link{hclust}}).
#'
#' @param k Integer, the number of rectangles drawn on the graph according to
#'   the hierarchical cluster, for function \code{corrRect.hclust}.
#'
#' @param col Color of rectangles.
#' @param lwd Line width of rectangles.
#'
#' @param method Character, the agglomeration method to be used for hierarchical
#'   clustering (\code{\link{hclust}}). This should be (an unambiguous
#'   abbreviation of) one of \code{'ward'}, \code{'ward.D'}, \code{'ward.D2'},
#'   \code{'single'}, \code{'complete'}, \code{'average'}, \code{'mcquitty'},
#'   \code{'median'} or \code{'centroid'}.
#'
#' @example vignettes/example-corrRect.hclust.R
#' @keywords hplot
#' @author Taiyun Wei
#' @export
corrRect.hclust = function(
  corr,
  k = 2,
  col = 'black',
  lwd = 2,
  method = c('complete', 'ward', 'ward.D', 'ward.D2', 'single', 'average',
             'mcquitty', 'median', 'centroid'))
{

  n = nrow(corr)
  method = match.arg(method)
  tree = hclust(as.dist(1 - corr), method = method)
  hc = cutree(tree, k = k)
  clustab = table(hc)[unique(hc[tree$order])]
  cu = c(0, cumsum(clustab))

  rect(cu[-(k + 1)] + 0.5,
       n - cu[-(k + 1)] + 0.5,
       cu[-1] + 0.5,
       n - cu[-1] + 0.5,
       border = col, lwd = lwd)
}

Try the corrplot package in your browser

Any scripts or data that you put into this service are public.

corrplot documentation built on Oct. 14, 2024, 5:08 p.m.