Nothing
## ----setup, include = FALSE---------------------------------------------------
library(cort)
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7,
fig.height = 7
)
## ----"getting data and parameters"--------------------------------------------
set.seed(1)
df <- apply(LifeCycleSavings,2,rank)/(nrow(LifeCycleSavings)+1)
d = ncol(df)
n = nrow(df)
nb_replicates = 20 # number of replication of the resampling.
nb_fold = 5 # "k" value for the k-fold resampling method.
nb_cop = 50 # the number of m-randomized checkerboard copulas we will test.
pairs(df,lower.panel = NULL)
## ----"fitting_functions"------------------------------------------------------
make_k_fold_samples <- function(data,k = nb_fold,n_repeat = 1){
sapply(1:n_repeat,function(n){
# shuffle data :
data <- data[sample(nrow(data)),]
# create k folds :
folds <- cut(seq(1,nrow(data)),breaks=k,labels=FALSE)
sapply(1:k,function(i){
test_index <- which(folds==i,arr.ind=TRUE)
return(list(train = data[-test_index,],
test = data[test_index,]))
},simplify=FALSE)
})
}
build_random_m <- function(how_much=1,dim = d,nrow_data){
t(sapply(1:how_much,function(i){
m_pos = (2:nrow_data)[nrow_data%%(2:nrow_data)==0]
sample(m_pos,d,replace=TRUE)
}))
}
build_all_checkerboard <- function(sampled_data,m){
lapply(sampled_data,function(d){
apply(m,1,function(m_){
cbCopula(x = d$train,m = m_,pseudo=TRUE)
})
})
}
samples <- make_k_fold_samples(df,k=nb_fold,n_repeat=nb_replicates)
rand_m <- build_random_m(nb_cop,d,nrow(samples[[1]]$train))
cops <- build_all_checkerboard(samples,rand_m)
## -----------------------------------------------------------------------------
pEmpCop <- function(points,data=df){
sapply(1:nrow(points),function(i){
sum(colSums(t(data) <= points[i,]) == d)
}) / nrow(data)
}
## -----------------------------------------------------------------------------
error <- function(cop,i,j){
test <- samples[[i]]$test
return(sum((pCopula(test,cop) - pEmpCop(test))^2))
}
errors <- sapply(1:(nb_replicates*nb_fold),function(i){
sapply(1:nb_cop,function(j){
error(cops[[i]][[j]],i,j)
})
})
rmse_by_model <- sqrt(rowMeans(errors))
plot(rmse_by_model)
## -----------------------------------------------------------------------------
rand_m
## -----------------------------------------------------------------------------
convex_combination <- ConvexCombCopula(unlist(cops,recursive=FALSE),alpha = rep(1/rmse_by_model,nb_replicates*nb_fold))
simu = rCopula(1000,convex_combination)
pairs(simu,lower.panel = NULL,cex=0.5)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.