Description Usage Arguments Details Value Author(s) See Also Examples
Predict the normalized data using a previously fitted normalization model.
1  | 
normObj | 
 the result from   | 
newdata | 
 an   | 
factors | 
 column names in the pheno data slot describing the biological factors. Or a design matrix.  | 
lg | 
 logical indicating that the data should be log transformed  | 
predfunc | 
 the function to use to get predicted values from the fitted object (only for crmn)  | 
... | 
 passed on to   | 
Apply fitted normalization parameters to new data to get normalized data. Current can not only handle matrices as input for methods 'RI' and 'one'.
the normalized data
Henning Redestig
1 2 3 4 5 6 7 8 9 10 11  | data(mix)
nfit <- normFit(mix, "crmn", factor="type", ncomp=3)
normedData <- normPred(nfit, mix, "type")
slplot(pca(t(log2(exprs(normedData)))), scol=as.integer(mix$type))
## same thing
Y <- exprs(mix)
G <- with(pData(mix), model.matrix(~-1+type))
isIS <- fData(mix)$tag == 'IS'
nfit <- normFit(Y, "crmn", factors=G, ncomp=3, standards=isIS)
normedData <- normPred(nfit, Y, G, standards=isIS)
slplot(pca(t(log2(normedData))), scol=as.integer(mix$type))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.