Description Usage Arguments Details Value Author(s) See Also Examples
Predict the normalized data using a previously fitted normalization model.
1 |
normObj |
the result from |
newdata |
an |
factors |
column names in the pheno data slot describing the biological factors. Or a design matrix. |
lg |
logical indicating that the data should be log transformed |
predfunc |
the function to use to get predicted values from the fitted object (only for crmn) |
... |
passed on to |
Apply fitted normalization parameters to new data to get normalized data. Current can not only handle matrices as input for methods 'RI' and 'one'.
the normalized data
Henning Redestig
1 2 3 4 5 6 7 8 9 10 11 | data(mix)
nfit <- normFit(mix, "crmn", factor="type", ncomp=3)
normedData <- normPred(nfit, mix, "type")
slplot(pca(t(log2(exprs(normedData)))), scol=as.integer(mix$type))
## same thing
Y <- exprs(mix)
G <- with(pData(mix), model.matrix(~-1+type))
isIS <- fData(mix)$tag == 'IS'
nfit <- normFit(Y, "crmn", factors=G, ncomp=3, standards=isIS)
normedData <- normPred(nfit, Y, G, standards=isIS)
slplot(pca(t(log2(normedData))), scol=as.integer(mix$type))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.