Nothing
#' @title Format Uphold file
#'
#' @description Format a .csv transaction history file from Uphold for later ACB processing.
#' @param data The dataframe
#' @param list.prices A `list.prices` object from which to fetch coin prices.
#' @param force Whether to force recreating `list.prices` even though
#' it already exists (e.g., if you added new coins or new dates).
#' @return A data frame of exchange transactions, formatted for further processing.
#' @export
#' @examples
#' format_uphold(data_uphold)
#' @importFrom dplyr %>% rename mutate rowwise filter select bind_rows arrange
#' @importFrom rlang .data
format_uphold <- function(data, list.prices = NULL, force = FALSE) {
known.transactions <- c("in", "out", "transfer")
# Rename columns
data <- data %>%
rename(
quantity = "Destination.Amount",
currency = "Destination.Currency",
description = "Type",
date = "Date"
)
# Check if there's any new transactions
check_new_transactions(data,
known.transactions = known.transactions,
transactions.col = "description")
# Add single dates to dataframe
data <- data %>%
mutate(date = lubridate::mdy_hms(.data$date))
# UTC confirmed
# Create a "buy" object
BUY <- data %>%
filter(.data$description %in% c(
"purchase_TEMP",
"transfer"
)) %>%
mutate(
transaction = "buy",
comment = paste0(.data$Origin.Currency, "-", .data$currency)
) %>%
select(
"date", "quantity", "currency",
"transaction", "description", "comment"
)
# Create a "earn" object
EARN <- data %>%
filter(.data$description %in% c("in")) %>%
mutate(
transaction = "revenue",
revenue.type = replace(
.data$description,
.data$description %in% c("in"),
"airdrops"
)
) %>%
select(
"date", "quantity", "currency", "transaction",
"revenue.type", "description"
)
# Create a "sell" object
SELL <- data %>%
filter(.data$description %in% c(
"sell_TEMP",
"transfer"
)) %>%
mutate(
transaction = "sell",
comment = paste0(.data$Origin.Currency, "-", .data$currency),
quantity = .data$Origin.Amount,
currency = .data$Origin.Currency
) %>%
select(
"date", "quantity", "currency",
"transaction", "description", "comment"
)
# Create a "withdrawals" object
WITHDRAWALS <- data %>%
filter(.data$description == "out") %>%
mutate(
quantity = .data$Fee.Amount,
transaction = "sell",
comment = "withdrawal fees"
) %>%
select(
"date", "quantity", "currency", "transaction",
"description", "comment"
)
# Actually withdrawal fees should be like "selling at zero", so correct total.price
# WITHDRAWALS <- WITHDRAWALS %>%
# mutate(total.price = 0)
# Merge the "buy" and "sell" objects
data <- merge_exchanges(BUY, EARN, SELL, WITHDRAWALS) %>%
mutate(exchange = "uphold")
# Rename transfers as trades for clarity
data <- data %>%
mutate(description = ifelse(.data$description == "transfer",
"trade",
.data$description
))
# Determine spot rate and value of coins
data <- match_prices(data, list.prices = list.prices, force = force)
data <- data %>%
mutate(total.price = ifelse(is.na(.data$total.price),
.data$quantity * .data$spot.rate,
.data$total.price
))
# CORRECT SPOT RATE FOR COIN TO COIN TRANSACTIONS [for sales]
# Replace total.price first, then in a second step spot.rate
coin.prices <- data %>%
filter(.data$transaction %in% c("buy")) %>%
mutate(transaction = "sell")
# Recreate the SELL object because we need the calculated total prices
SELL <- data %>%
filter(.data$transaction %in% c("sell"))
# These are the prices I want to replace
SELL[which(SELL$date %in% coin.prices$date), "total.price"]
# These are the correct prices
coin.prices[which(coin.prices$date %in% SELL$date), "total.price"]
# Let's replace them
SELL[which(SELL$date %in% coin.prices$date), "total.price"] <- coin.prices[which(
coin.prices$date %in% SELL$date
), "total.price"]
# Now let's recalculate spot.rate
SELL <- SELL %>%
mutate(spot.rate = .data$total.price / .data$quantity)
# Let's also replace the rate.source for these transactions
SELL[which(SELL$date %in% coin.prices$date), "rate.source"] <- "coinmarketcap (buy price)"
# Replace these transactions in the main dataframe
data[which(data$transaction == "sell"), ] <- SELL
# Arrange in correct order
data <- data %>%
arrange(date, desc(.data$total.price))
# Reorder columns properly
data <- data %>%
select(
"date", "currency", "quantity", "total.price", "spot.rate", "transaction",
"description", "comment", "revenue.type", "exchange", "rate.source"
)
# Return result
data
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.