Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/completepgramv2.R
Function to calculate the predictive DFT.
1 |
x |
time series vector. |
freq |
frequency vector. |
taper |
logical vector. If TRUE, use the tapered time series to estimate an AR coefficients. Default is FALSE. |
ar |
predetermined AR coefficients to evaluate the predictive DFT. Default is NULL. |
... |
Arguments passing ar() function. |
If ar vector is predetermined, then we evaluate the predictive DFT using the this AR coefficient vector (see eq (2.2) of the reference). If ar is not specified (default), then we fit the best fitting AR(p) model using AIC and Yule-Walker estimator.
The complex valued predictive DFT vector.
Junho Yang
S. Das, S. Subba Rao, and J. Yang. Spectral methods for small sample time series: A complete periodogram approach. Submitted, 2020.
complete.pgram
, tapered.complete.pgram
1 2 3 4 5 6 7 | set.seed(123)
x <- arima.sim(model=list(ar=0.7), n=100)
v1 <- predictiveDFT(x) #default
v2 <- predictiveDFT(x,ar=c(0.7)) #predictive DFT using AR(1) model with coefficient: 0.7.
v3 <- predictiveDFT(x,taper=TRUE) #Using tapered time series to fit the best AR model.
v4 <- predictiveDFT(x, method="ols") #Using ols method to fit the best AR model.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.