Description Usage Arguments Value Examples
Train an Ordinary Least Square (OLS) model for regression tasks.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | cuda_ml_ols(x, ...)
## Default S3 method:
cuda_ml_ols(x, ...)
## S3 method for class 'data.frame'
cuda_ml_ols(
  x,
  y,
  method = c("svd", "eig", "qr"),
  fit_intercept = TRUE,
  normalize_input = FALSE,
  ...
)
## S3 method for class 'matrix'
cuda_ml_ols(
  x,
  y,
  method = c("svd", "eig", "qr"),
  fit_intercept = TRUE,
  normalize_input = FALSE,
  ...
)
## S3 method for class 'formula'
cuda_ml_ols(
  formula,
  data,
  method = c("svd", "eig", "qr"),
  fit_intercept = TRUE,
  normalize_input = FALSE,
  ...
)
## S3 method for class 'recipe'
cuda_ml_ols(
  x,
  data,
  method = c("svd", "eig", "qr"),
  fit_intercept = TRUE,
  normalize_input = FALSE,
  ...
)
 | 
| x | Depending on the context: * A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__ specifying a set of preprocessing steps * created from [recipes::recipe()]. * A __formula__ specifying the predictors and the outcome. | 
| ... | Optional arguments; currently unused. | 
| y | A numeric vector (for regression) or factor (for classification) of desired responses. | 
| method | Must be one of "svd", "eig", "qr". - "svd": compute SVD decomposition using Jacobi iterations. - "eig": use an eigendecomposition of the covariance matrix. - "qr": use the QR decomposition algorithm and solve 'Rx = Q^T y'. If the number of features is larger than the sample size, then the "svd" algorithm will be force-selected because it is the only algorithm that can support this type of scenario. Default: "svd". | 
| fit_intercept | If TRUE, then the model tries to correct for the global mean of the response variable. If FALSE, then the model expects data to be centered. Default: TRUE. | 
| normalize_input | Ignored when  | 
| formula | A formula specifying the outcome terms on the left-hand side, and the predictor terms on the right-hand side. | 
| data | When a __recipe__ or __formula__ is used,  | 
A OLS regressor that can be used with the 'predict' S3 generic to make predictions on new data points.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | library(cuda.ml)
model <- cuda_ml_ols(formula = mpg ~ ., data = mtcars, method = "qr")
predictions <- predict(model, mtcars[names(mtcars) != "mpg"])
# predictions will be comparable to those from a `stats::lm` model
lm_model <- stats::lm(formula = mpg ~ ., data = mtcars, method = "qr")
lm_predictions <- predict(lm_model, mtcars[names(mtcars) != "mpg"])
print(
  all.equal(
    as.numeric(lm_predictions),
    predictions$.pred,
    tolerance = 1e-3
  )
)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.