Nothing
context("Principal Component Analysis")
cuda_ml_pca_model <- cuda_ml_pca(
iris[, which(names(iris) != "Species")],
n_components = 3
)
sklearn_pca_model <- sklearn$decomposition$PCA(n_components = 3L, copy = TRUE)
sklearn_pca_model$fit(sklearn_iris_dataset$data)
test_that("cuda_ml_pca() works as expected", {
expect_equal(
cuda_ml_pca_model$components, as.matrix(sklearn_pca_model$components_),
tolerance = 1e-8, scale = 1
)
expect_equal(
cuda_ml_pca_model$explained_variance,
as.numeric(sklearn_pca_model$explained_variance_),
tolerance = 1e-8, scale = 1
)
expect_equal(
cuda_ml_pca_model$explained_variance_ratio,
as.numeric(sklearn_pca_model$explained_variance_ratio_),
tolerance = 1e-8, scale = 1
)
expect_equal(
cuda_ml_pca_model$singular_values,
as.numeric(sklearn_pca_model$singular_values_),
tolerance = 1e-8, scale = 1
)
expect_equal(
cuda_ml_pca_model$mean, as.numeric(sklearn_pca_model$mean_),
tolerance = 1e-8, scale = 1
)
})
test_that("cuda_ml_inverse_transform() works as expected for PCA models", {
expect_equal(
cuda_ml_pca_model$transformed_data %>%
sklearn_pca_model$inverse_transform() %>%
as.matrix(),
cuda_ml_pca_model %>%
cuda_ml_inverse_transform(cuda_ml_pca_model$transformed_data),
tolerance = 1e-8, scale = 1
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.