Nothing
context("Random Forest")
test_that("random forest classifier works as expected", {
cuda_ml_rf_model <- cuda_ml_rand_forest(
formula = Species ~ ., data = iris, trees = 200, bootstrap = FALSE
)
sklearn_rf_model <- sklearn$ensemble$RandomForestClassifier(
n_estimators = 200L, bootstrap = FALSE
)
sklearn_rf_model$fit(
X = as.matrix(iris[which(names(iris) != "Species")]),
y = as.integer(iris$Species)
)
cuda_ml_preds <- predict(
cuda_ml_rf_model, iris[which(names(iris) != "Species")]
)
sklearn_preds <- sklearn_rf_model$predict(
as.matrix(iris[which(names(iris) != "Species")])
)
expect_equal(
as.integer(cuda_ml_preds$.pred_class), as.integer(sklearn_preds)
)
})
test_that("random forest regressor works as expected", {
cuda_ml_rf_model <- cuda_ml_rand_forest(
formula = mpg ~ ., data = mtcars, trees = 100, bootstrap = FALSE
)
cuda_ml_preds <- predict(
cuda_ml_rf_model, mtcars[which(names(mtcars) != "mpg")]
)
expect_equal(cuda_ml_preds$.pred, mtcars$mpg, tolerance = 0.2)
})
test_that("random forest classifier works as expected through parsnip", {
require("parsnip")
cuda_ml_rf_model <- rand_forest(trees = 200, mode = "classification") %>%
set_engine("cuda.ml", bootstrap = FALSE) %>%
fit(Species ~ ., data = iris)
sklearn_rf_model <- sklearn$ensemble$RandomForestClassifier(
n_estimators = 200L, bootstrap = FALSE
)
sklearn_rf_model$fit(
X = as.matrix(iris[which(names(iris) != "Species")]),
y = as.integer(iris$Species)
)
cuda_ml_preds <- predict(
cuda_ml_rf_model, iris[which(names(iris) != "Species")]
)
sklearn_preds <- sklearn_rf_model$predict(
as.matrix(iris[which(names(iris) != "Species")])
)
expect_equal(
as.integer(cuda_ml_preds$.pred_class), as.integer(sklearn_preds)
)
})
test_that("random forest regressor works as expected through parsnip", {
require("parsnip")
cuda_ml_rf_model <- rand_forest(trees = 200, mode = "regression") %>%
set_engine("cuda.ml", bootstrap = FALSE) %>%
fit(mpg ~ ., data = mtcars)
cuda_ml_preds <- predict(
cuda_ml_rf_model, mtcars[which(names(mtcars) != "mpg")]
)
expect_equal(cuda_ml_preds$.pred, mtcars$mpg, tolerance = 0.2)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.