Nothing
context("Truncated SVD")
tsvd_model <- sklearn$decomposition$TruncatedSVD(
n_components = 2L, algorithm = "arpack"
)
sklearn_tsvd_model <- tsvd_model$fit(sklearn_iris_dataset$data)
cuda_ml_tsvd_model <- cuda_ml_tsvd(iris[1:4], n_components = 2)
test_that("cuda_ml_tsvd() works as expected", {
expect_equal(
cuda_ml_tsvd_model$components, sklearn_tsvd_model$components_,
tolerance = 1e-8, scale = 1
)
expect_equal(
cuda_ml_tsvd_model$explained_variance,
as.numeric(sklearn_tsvd_model$explained_variance_),
tolerance = 1e-8, scale = 1
)
expect_equal(
cuda_ml_tsvd_model$explained_variance,
as.numeric(sklearn_tsvd_model$explained_variance_),
tolerance = 1e-8, scale = 1
)
expect_equal(
cuda_ml_tsvd_model$explained_variance_ratio,
as.numeric(sklearn_tsvd_model$explained_variance_ratio_),
tolerance = 1e-8, scale = 1
)
expect_equal(
cuda_ml_tsvd_model$singular_values,
as.numeric(sklearn_tsvd_model$singular_values_),
tolerance = 1e-8, scale = 1
)
expect_equal(
cuda_ml_tsvd_model$transformed_data,
sklearn_tsvd_model$transform(sklearn_iris_dataset$data),
tolerance = 1e-8, scale = 1
)
})
test_that("cuda_ml_inverse_transform() works as expected for TSVD models", {
expect_equal(
cuda_ml_inverse_transform(
cuda_ml_tsvd_model, cuda_ml_tsvd_model$transformed_data
),
sklearn_tsvd_model$inverse_transform(cuda_ml_tsvd_model$transformed_data)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.