R/RcppExports.R

Defines functions .umap_set_state .umap_get_state .umap_transform .umap_fit .tsvd_inverse_transform .tsvd_fit_transform .tsne_fit .svr_set_state .svr_get_state .svr_predict .svr_fit .svc_set_state .svc_get_state .svc_predict .svc_fit .rproj_transform .rproj_fit .rproj_johnson_lindenstrauss_min_dim .rf_regressor_predict .rf_regressor_fit .rf_classifier_predict_class_probabilities .rf_classifier_predict .rf_classifier_fit .pca_inverse_transform .pca_fit_transform .knn_regressor_predict .knn_regressor_fit .knn_classifier_predict_probabilities .knn_classifier_predict .knn_classifier_fit .kmeans .fil_predict .fil_get_num_classes .fil_load_model .fil_enabled .dbscan .has_libcuml .agglomerative_clustering

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

.agglomerative_clustering <- function(x, pairwise_conn, metric, n_neighbors, n_clusters) {
    .Call(`_cuml_agglomerative_clustering`, x, pairwise_conn, metric, n_neighbors, n_clusters)
}

.has_libcuml <- function() {
    .Call(`_cuml_has_libcuml`)
}

.dbscan <- function(x, min_pts, eps, max_bytes_per_batch, verbosity) {
    .Call(`_cuml_dbscan`, x, min_pts, eps, max_bytes_per_batch, verbosity)
}

.fil_enabled <- function() {
    .Call(`_cuml_fil_enabled`)
}

.fil_load_model <- function(model_type, filename, algo, classification, threshold, storage_type, blocks_per_sm, threads_per_tree, n_items) {
    .Call(`_cuml_fil_load_model`, model_type, filename, algo, classification, threshold, storage_type, blocks_per_sm, threads_per_tree, n_items)
}

.fil_get_num_classes <- function(model) {
    .Call(`_cuml_fil_get_num_classes`, model)
}

.fil_predict <- function(model, x, output_class_probabilities) {
    .Call(`_cuml_fil_predict`, model, x, output_class_probabilities)
}

.kmeans <- function(x, k, max_iters, tol, init_method, centroids, seed, verbosity) {
    .Call(`_cuml_kmeans`, x, k, max_iters, tol, init_method, centroids, seed, verbosity)
}

.knn_classifier_fit <- function(x, y, algo, metric, p, algo_params) {
    .Call(`_cuml_knn_classifier_fit`, x, y, algo, metric, p, algo_params)
}

.knn_classifier_predict <- function(model, x, n_neighbors) {
    .Call(`_cuml_knn_classifier_predict`, model, x, n_neighbors)
}

.knn_classifier_predict_probabilities <- function(model, x, n_neighbors) {
    .Call(`_cuml_knn_classifier_predict_probabilities`, model, x, n_neighbors)
}

.knn_regressor_fit <- function(x, y, algo, metric, p, algo_params) {
    .Call(`_cuml_knn_regressor_fit`, x, y, algo, metric, p, algo_params)
}

.knn_regressor_predict <- function(model, x, n_neighbors) {
    .Call(`_cuml_knn_regressor_predict`, model, x, n_neighbors)
}

.pca_fit_transform <- function(x, tol, n_iters, verbosity, n_components, algo, whiten, transform_input) {
    .Call(`_cuml_pca_fit_transform`, x, tol, n_iters, verbosity, n_components, algo, whiten, transform_input)
}

.pca_inverse_transform <- function(model, x) {
    .Call(`_cuml_pca_inverse_transform`, model, x)
}

.rf_classifier_fit <- function(input, labels, n_trees, bootstrap, max_samples, n_streams, max_depth, max_leaves, max_features, n_bins, min_samples_leaf, min_samples_split, split_criterion, min_impurity_decrease, max_batch_size, verbosity) {
    .Call(`_cuml_rf_classifier_fit`, input, labels, n_trees, bootstrap, max_samples, n_streams, max_depth, max_leaves, max_features, n_bins, min_samples_leaf, min_samples_split, split_criterion, min_impurity_decrease, max_batch_size, verbosity)
}

.rf_classifier_predict <- function(model_xptr, input, verbosity) {
    .Call(`_cuml_rf_classifier_predict`, model_xptr, input, verbosity)
}

.rf_classifier_predict_class_probabilities <- function(model_xptr, input) {
    .Call(`_cuml_rf_classifier_predict_class_probabilities`, model_xptr, input)
}

.rf_regressor_fit <- function(input, responses, n_trees, bootstrap, max_samples, n_streams, max_depth, max_leaves, max_features, n_bins, min_samples_leaf, min_samples_split, split_criterion, min_impurity_decrease, max_batch_size, verbosity) {
    .Call(`_cuml_rf_regressor_fit`, input, responses, n_trees, bootstrap, max_samples, n_streams, max_depth, max_leaves, max_features, n_bins, min_samples_leaf, min_samples_split, split_criterion, min_impurity_decrease, max_batch_size, verbosity)
}

.rf_regressor_predict <- function(model_xptr, input, verbosity) {
    .Call(`_cuml_rf_regressor_predict`, model_xptr, input, verbosity)
}

.rproj_johnson_lindenstrauss_min_dim <- function(n_samples, eps) {
    .Call(`_cuml_rproj_johnson_lindenstrauss_min_dim`, n_samples, eps)
}

.rproj_fit <- function(n_samples, n_features, n_components, eps, gaussian_method, density, random_state) {
    .Call(`_cuml_rproj_fit`, n_samples, n_features, n_components, eps, gaussian_method, density, random_state)
}

.rproj_transform <- function(rproj_ctx_xptr, input) {
    .Call(`_cuml_rproj_transform`, rproj_ctx_xptr, input)
}

.svc_fit <- function(input, labels, cost, kernel, gamma, coef0, degree, tol, max_iter, nochange_steps, cache_size, sample_weights, verbosity) {
    .Call(`_cuml_svc_fit`, input, labels, cost, kernel, gamma, coef0, degree, tol, max_iter, nochange_steps, cache_size, sample_weights, verbosity)
}

.svc_predict <- function(model_xptr, input, predict_class) {
    .Call(`_cuml_svc_predict`, model_xptr, input, predict_class)
}

.svc_get_state <- function(model) {
    .Call(`_cuml_svc_get_state`, model)
}

.svc_set_state <- function(state) {
    .Call(`_cuml_svc_set_state`, state)
}

.svr_fit <- function(X, y, cost, kernel, gamma, coef0, degree, tol, max_iter, nochange_steps, cache_size, epsilon, sample_weights, verbosity) {
    .Call(`_cuml_svr_fit`, X, y, cost, kernel, gamma, coef0, degree, tol, max_iter, nochange_steps, cache_size, epsilon, sample_weights, verbosity)
}

.svr_predict <- function(svr_xptr, X) {
    .Call(`_cuml_svr_predict`, svr_xptr, X)
}

.svr_get_state <- function(model) {
    .Call(`_cuml_svr_get_state`, model)
}

.svr_set_state <- function(state) {
    .Call(`_cuml_svr_set_state`, state)
}

.tsne_fit <- function(x, dim, n_neighbors, theta, epssq, perplexity, perplexity_max_iter, perplexity_tol, early_exaggeration, late_exaggeration, exaggeration_iter, min_gain, pre_learning_rate, post_learning_rate, max_iter, min_grad_norm, pre_momentum, post_momentum, random_state, verbosity, initialize_embeddings, square_distances, algo) {
    .Call(`_cuml_tsne_fit`, x, dim, n_neighbors, theta, epssq, perplexity, perplexity_max_iter, perplexity_tol, early_exaggeration, late_exaggeration, exaggeration_iter, min_gain, pre_learning_rate, post_learning_rate, max_iter, min_grad_norm, pre_momentum, post_momentum, random_state, verbosity, initialize_embeddings, square_distances, algo)
}

.tsvd_fit_transform <- function(x, tol, n_iters, verbosity, n_components, algo, transform_input) {
    .Call(`_cuml_tsvd_fit_transform`, x, tol, n_iters, verbosity, n_components, algo, transform_input)
}

.tsvd_inverse_transform <- function(model, x) {
    .Call(`_cuml_tsvd_inverse_transform`, model, x)
}

.umap_fit <- function(x, y, n_neighbors, n_components, n_epochs, learning_rate, min_dist, spread, set_op_mix_ratio, local_connectivity, repulsion_strength, negative_sample_rate, transform_queue_size, verbosity, a, b, init, target_n_neighbors, target_metric, target_weight, random_state, deterministic) {
    .Call(`_cuml_umap_fit`, x, y, n_neighbors, n_components, n_epochs, learning_rate, min_dist, spread, set_op_mix_ratio, local_connectivity, repulsion_strength, negative_sample_rate, transform_queue_size, verbosity, a, b, init, target_n_neighbors, target_metric, target_weight, random_state, deterministic)
}

.umap_transform <- function(model, x) {
    .Call(`_cuml_umap_transform`, model, x)
}

.umap_get_state <- function(model) {
    .Call(`_cuml_umap_get_state`, model)
}

.umap_set_state <- function(state) {
    .Call(`_cuml_umap_set_state`, state)
}

Try the cuml package in your browser

Any scripts or data that you put into this service are public.

cuml documentation built on Sept. 21, 2021, 1:06 a.m.