Nothing
#' @title pt_cure_ic_multneh function
#'
#' @description calculates the probability Pi(t) of being
#' cured at a given time t after diagnosis knowing that he/she was alive up to
#' time t. It also provides the related confidence intervals using plain_method.
#'
#' @param object ouput from a model implemented in curesurv
#'
#' @param z_alpha Covariates matrix acting on parameter alpha of the density of
#' time-to-null excess hazard model
#'
#' @param z_tau Covariates matrix acting on time-to-null parameter.
#'
#' @param x time at which the predictions are provided
#'
#' @param level (1-alpha/2)-order quantile of a normal distribution
#'
#' @param cumLexctopred pre prediction obtained from cumLexc_mul_topred, if NULL will be calculated
#'
#' @param Dpt_cure partial derivative of pt_cure according to theta, if NULL will be calculated
#'
#' @author Juste Goungounga, Judith Breaud, Olayide Boussari, Laura Botta, Valerie Jooste
#'
#' @references Boussari O, Bordes L, Romain G, Colonna M, Bossard N, Remontet L,
#' Jooste V. Modeling excess hazard with time-to-cure as a parameter.
#' Biometrics. 2021 Dec;77(4):1289-1302. doi: 10.1111/biom.13361.
#' Epub 2020 Sep 12. PMID: 32869288.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/32869288/}{pubmed})
#'
#'
#' Boussari O, Romain G, Remontet L, Bossard N, Mounier M, Bouvier AM,
#' Binquet C, Colonna M, Jooste V. A new approach to estimate time-to-cure from
#' cancer registries data. Cancer Epidemiol. 2018 Apr;53:72-80.
#' doi: 10.1016/j.canep.2018.01.013. Epub 2018 Feb 4. PMID: 29414635.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/29414635/}{pubmed})
#'
#' @keywords internal
pt_cure_ic_multneh <- function(z_tau = z_tau,
z_alpha = z_alpha,
x = x,
object,
level = level,
cumLexctopred=NULL,
Dpt_cure=NULL) {
if (!inherits(object, "curesurv"))
stop("Primary argument much be a curesurv object")
theta <- object$coefficients
if(is.null(cumLexctopred)){
cumLexctopred<-cumLexc_mul_topred(z_tau,z_alpha,x,theta)
}
if(is.null(Dpt_cure)){
Dpt_cure<-dptdtheta_multneh(z_tau, z_alpha, x, object,cumLexctopred=cumLexctopred)
}
pt_cure <- cumLexctopred$pt_cure
varpt <- diag(Dpt_cure %*% object$varcov_star %*% t(Dpt_cure))
lower_bound <- pt_cure - stats::qnorm(level) * sqrt(varpt)
upper_bound <- pt_cure + stats::qnorm(level) * sqrt(varpt)
IC <- list(pt_cure = pt_cure,
lower_bound = lower_bound,
upper_bound = upper_bound)
return(IC)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.