Nothing
#' @title pt_cure_ic_multneh_log function
#'
#' @description calculates the probability of the probability Pi(t) of being
#' cured at a given time t after diagnosis knowing that he/she was alive up to
#' time t. It also provides the related confidence intervals using log method.
#'
#'
#' @param object ouput from a model implemented in curesurv
#'
#' @param z_alpha Covariates matrix acting on parameter alpha of the density of
#' time-to-null excess hazard model
#'
#' @param z_tau Covariates matrix acting on time-to-null parameter.
#'
#' @param x time at which the predictions are provided
#'
#' @param level (1-alpha/2)-order quantile of a normal distribution
#'
#' @param cumLexctopred pre prediction obtained from cumLexc_mul_topred, if NULL will be calculated
#'
#' @param Dpt_cure partial derivative of pt_cure according to theta, if NULL will be calculated
#'
#' @keywords internal
pt_cure_ic_multneh_log = function(z_tau = z_tau,
z_alpha = z_alpha,
x = x,
object,
level = level,
cumLexctopred=NULL,
Dpt_cure=NULL) {
if (!inherits(object, "curesurv"))
stop("Primary argument much be a curesurv object")
theta <- object$coefficients
if(is.null(cumLexctopred)){
cumLexctopred<-cumLexc_mul_topred(z_tau,z_alpha,x,theta)
}
if(is.null(Dpt_cure)){
Dpt_cure<-dptdtheta_multneh(z_tau, z_alpha, x, object,cumLexctopred=cumLexctopred)
}
pt_cure <- cumLexctopred$pt_cure
Dlog <- sweep(Dpt_cure, 1/pt_cure, MARGIN = 1, '*' )
varlogpt <- diag(Dlog %*% object$varcov_star %*% t(Dlog))
lower_bound <- exp(log(pt_cure) - stats::qnorm(level) * sqrt(varlogpt))
upper_bound <- exp(log(pt_cure) + stats::qnorm(level) * sqrt(varlogpt))
IC <- list(pt_cure = pt_cure,
lower_bound = lower_bound,
upper_bound = upper_bound)
return(IC)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.