inst/doc/gscusum.R

## ----setup, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.dim = c(7,5)
)

library(cusum)
library(ggplot2)


## ------------------------------------------------------------------------
head(gscusum_example_data)




## ------------------------------------------------------------------------
head(ragscusum_example_data)


## ------------------------------------------------------------------------
failure_probability <- mean(gscusum_example_data$y[gscusum_example_data$year == 2016])

n_patients <- nrow(gscusum_example_data[gscusum_example_data$year == 2016,])

## ------------------------------------------------------------------------

cusum_limit <- cusum_limit_sim(failure_probability,
                            n_patients,
                            odds_multiplier = 2,
                            n_simulation = 1000,
                            alpha = 0.05,
                            seed = 2046)


print(cusum_limit)

## ------------------------------------------------------------------------

gscusum_data <- gscusum_example_data[gscusum_example_data$year == 2017,]

input_outcomes <- matrix(c(gscusum_data$y, gscusum_data$block_identifier), ncol = 2)


gcs <- gscusum(input_outcomes = input_outcomes,
              failure_probability = failure_probability,
              odds_multiplier = 2,
              limit = cusum_limit,
              max_num_shuffles = 1000,
              quantiles = c(0.,0.05,0.25,0.5,0.75,.95,1))

## ------------------------------------------------------------------------
gcs <- as.data.frame(gcs)
names(gcs) <- c("sig_prob", "avg", "min", "q05", "q25", "median","q75","q95","max")
head(gcs)

## ------------------------------------------------------------------------
gcs$block_identifier <- input_outcomes[,2]
gcs$t <- seq(1,nrow(gcs))

col1 <- "#f7ba02"
col2 <- "#4063bc"
palette <- rep(c(col1, col2), 300)

ggplot() +
  geom_line(data = gcs, aes(x = t, y = sig_prob)) +
  geom_point(data = gcs, aes(x = t, y = sig_prob, col = as.factor(block_identifier) )) +
  scale_color_manual(guide=FALSE, values = palette) +
  scale_y_continuous(name = "Signal Probability", limits = c(0,1))+
  theme_bw()

## ------------------------------------------------------------------------
nblock <- max(gcs$block_identifier)

p <- ggplot(gcs)

for ( i in 1: nblock){
  dblock <- gcs[gcs$block_identifier == i,]
  col <- ifelse(i %% 2 == 0,col2,col1)
  dblock_before <- dblock[1,]
  dblock_before$t <- dblock_before$t - .5
  dblock_after <- dblock[nrow(dblock),]
  dblock_after$t <- dblock_after$t + .5
  dblock_n <- rbind(dblock, dblock_before, dblock_after)

  p <- p +
    geom_ribbon(data = dblock_n, aes(x = t, ymin = min, ymax = max), fill = col, alpha = 0.2) +
    geom_ribbon(data = dblock_n, aes(x = t, ymin = q05, ymax = q95), fill = col, alpha = 0.2) +
    geom_ribbon(data = dblock_n, aes(x = t, ymin = q25, ymax = q75), fill = col, alpha = 0.2)

}

p <- p +
  geom_line(data = gcs, aes(x = t, y = median)) +
  geom_point(data = gcs, aes( x = t, y = median, fill = as.factor(block_identifier)), size=2, pch = 21)+
  geom_hline(aes(yintercept = cusum_limit), linetype = 2) +
  theme_bw() +
  scale_y_continuous(name = "CUSUM Distribution") +
  scale_x_continuous(name = "Sequence of Observations") +
  scale_fill_manual(values = palette, guide = FALSE) +
  labs(subtitle = "GSCUSUM")
p

## ------------------------------------------------------------------------
n_patients <- nrow(ragscusum_example_data[ragscusum_example_data$year == 2016,])

## ------------------------------------------------------------------------

racusum_limit <- racusum_limit_sim(patient_risks = ragscusum_example_data$score[ragscusum_example_data$year == 2016],
                            odds_multiplier = 2,
                            n_simulation = 1000,
                            alpha = 0.05,
                            seed = 2046)


print(racusum_limit)

## ------------------------------------------------------------------------

ragscusum_data <- ragscusum_example_data[ragscusum_example_data$year == 2017,]

input_outcomes <- matrix(c(gscusum_data$y, gscusum_data$block_identifier), ncol = 2)


gcs <- gscusum(input_outcomes = input_outcomes,
              failure_probability = failure_probability,
              odds_multiplier = 2,
              limit = cusum_limit,
              max_num_shuffles = 1000,
              quantiles = c(0.,0.05,0.25,0.5,0.75,.95,1))

## ------------------------------------------------------------------------
gcs <- as.data.frame(gcs)
names(gcs) <- c("sig_prob", "avg", "min", "q05", "q25", "median","q75","q95","max")
head(gcs)

## ------------------------------------------------------------------------
gcs$block_identifier <- input_outcomes[,2]
gcs$t <- seq(1,nrow(gcs))

col1 <- "#f7ba02"
col2 <- "#4063bc"
palette <- rep(c(col1, col2), 300)

ggplot() +
  geom_line(data = gcs, aes(x = t, y = sig_prob)) +
  geom_point(data = gcs, aes(x = t, y = sig_prob, col = as.factor(block_identifier) )) +
  scale_color_manual(guide=FALSE, values = palette) +
  scale_y_continuous(name = "Signal Probability", limit = c(0,1))+
  theme_bw()

## ------------------------------------------------------------------------
nblock <- max(gcs$block_identifier)

p <- ggplot(gcs)

for ( i in 1: nblock){
  dblock <- gcs[gcs$block_identifier == i,]
  col <- ifelse(i %% 2 == 0,col2,col1)
  dblock_before <- dblock[1,]
  dblock_before$t <- dblock_before$t - .5
  dblock_after <- dblock[nrow(dblock),]
  dblock_after$t <- dblock_after$t + .5
  dblock_n <- rbind(dblock, dblock_before, dblock_after)

  p <- p +
    geom_ribbon(data = dblock_n, aes(x = t, ymin = min, ymax = max), fill = col, alpha = 0.2) +
    geom_ribbon(data = dblock_n, aes(x = t, ymin = q05, ymax = q95), fill = col, alpha = 0.2) +
    geom_ribbon(data = dblock_n, aes(x = t, ymin = q25, ymax = q75), fill = col, alpha = 0.2)

}

p <- p +
  geom_line(data = gcs, aes(x = t, y = median)) +
  geom_point(data = gcs, aes( x = t, y = median, fill = as.factor(block_identifier)), size=2, pch = 21)+
  geom_hline(aes(yintercept = cusum_limit), linetype = 2) +
  theme_bw() +
  scale_y_continuous(name = "RACUSUM Distribution") +
  scale_x_continuous(name = "Sequence of Observations") +
  scale_fill_manual(values = palette, guide = FALSE) +
  labs(subtitle = "RA-GSCUSUM")
p

Try the cusum package in your browser

Any scripts or data that you put into this service are public.

cusum documentation built on Oct. 2, 2019, 5:03 p.m.