ppv: Calculate the positive predictive value

View source: R/metrics.R

ppvR Documentation

Calculate the positive predictive value

Description

Calculate the positive predictive value (PPV) from true positives, false positives, true negatives and false negatives. The inputs must be vectors of equal length.

ppv = tp / (tp + fp)

Usage

ppv(tp, fp, tn, fn, ...)

Arguments

tp

(numeric) number of true positives.

fp

(numeric) number of false positives.

tn

(numeric) number of true negatives.

fn

(numeric) number of false negatives.

...

for capturing additional arguments passed by method.

See Also

Other metric functions: F1_score(), Jaccard(), abs_d_ppv_npv(), abs_d_sens_spec(), accuracy(), cohens_kappa(), cutpoint(), false_omission_rate(), metric_constrain(), misclassification_cost(), npv(), odds_ratio(), p_chisquared(), plr(), precision(), prod_ppv_npv(), prod_sens_spec(), recall(), risk_ratio(), roc01(), sensitivity(), specificity(), sum_ppv_npv(), sum_sens_spec(), total_utility(), tpr(), tp(), youden()

Examples

ppv(10, 5, 20, 10)
ppv(c(10, 8), c(5, 7), c(20, 12), c(10, 18))

cutpointr documentation built on April 14, 2022, 1:06 a.m.