tests/testthat/test-cv.R

# test that lm and glm methods produce the same results for a linear model

data("Auto", package="ISLR2", envir=environment())

lm.fit <- lm(mpg ~ horsepower, data=Auto)
glm.fit <- glm(mpg ~ horsepower,data=Auto)

test_that("lm vs glm loo", {
  expect_equal(cv(glm.fit, k="loo")$"CV crit",
               cv(lm.fit, k="loo")$"CV crit")
})

test_that("lm vs glm k=10", {
  expect_equal(cv(lm.fit, k=10, seed=123)[1:3],
  cv(glm.fit, k=10, seed=123)[1:3])
})

# test different algorithms for a linear model

test_that("lm hatvalues vs naive loo", {
  expect_equal(cv(lm.fit, k="loo", method="hatvalues")$"CV crit",
               cv(lm.fit, k="loo", method="naive")$"CV crit")
})

test_that("lm Woodbury vs naive loo", {
  expect_equal(cv(lm.fit, k="loo", method="Woodbury")[1:3],
               cv(lm.fit, k="loo", method="naive")[1:3])
})

test_that("lm Woodbury vs naive k=10", {
  expect_equal(cv(lm.fit, k=10, method="Woodbury", seed=123)[1:3],
               cv(lm.fit, k=10, method="naive", seed=123)[1:3])
})

# test different algorithms for a Gaussian generalized linear model

test_that("glm hatvalues vs exact loo", {
  expect_equal(cv(glm.fit, k="loo", method="hatvalues")$"CV crit",
               cv(glm.fit, k="loo", method="exact")$"CV crit")
})

test_that("glm Woodbury vs exact loo", {
  expect_equal(cv(glm.fit, k="loo", method="Woodbury")[1:3],
               cv(glm.fit, k="loo", method="exact")[1:3])
})

test_that("glm Woodbury vs exact k=10", {
  expect_equal(cv(glm.fit, k=10, method="Woodbury", seed=123)[1:3],
               cv(glm.fit, k=10, method="exact", seed=123)[1:3])
})

# test that nonlinear CV criterion is computed correctly

test_that("lm mse vs rmse", {
  expect_equal(unlist(cv(lm.fit, k=5, seed=123, criterion=mse)[c(1, 3)]),
               unlist(cv(lm.fit, k=5, seed=123, criterion=rmse)[c(1, 3)])^2)
})

# longer tests

# test that parallel computations work for a linear model

test_that("parallel computations lm loo", {
  skip_on_cran()
  expect_equal(cv(lm.fit, k="loo"),
               cv(lm.fit, k="loo", ncores=2))
})

test_that("parallel computations lm k=10", {
  skip_on_cran()
  expect_equal(cv(lm.fit, k=10, seed=123),
               cv(lm.fit, k=10, seed=123, ncores=2))
})

# test that parallel computations work for a generalized linear model

data("Caravan", package="ISLR2", envir=environment())
Cara <- Caravan[1:500, c(1:10, 86)]
m.caravan <- glm(Purchase ~ ., data=Cara, family=binomial)

test_that("parallel computations glm k=10", {
  skip_on_cran()
  expect_equal(cv(m.caravan, k=10, criterion=BayesRule, seed=123),
               cv(m.caravan, k=10, criterion=BayesRule, seed=123,
                  ncores=2))
})

test_that("parallel computations glm loo", {
  skip_on_cran()
  expect_equal(cv(m.caravan, k="loo", criterion=BayesRule),
               cv(m.caravan, k="loo", criterion=BayesRule,
                  ncores=2))
})

# test vs boot:cv.glm()

if (require(boot)){

  test_that("glm method for linear model matches boot::cv.glm()", {
    skip_on_cran()
    expect_equal(boot::cv.glm(Auto, glm.fit)$delta,
                 as.vector(unlist(cv(glm.fit, k="loo", criterion=mse)[1:2])))
  })

  test_that("lm method matches boot::cv.glm()", {
    skip_on_cran()
    expect_equal(boot::cv.glm(Auto, glm.fit)$delta,
                 as.vector(unlist(cv(lm.fit, k="loo",
                                     criterion=mse, method="Woodbury")[1:2])))
  })

  test_that("glm method for GLM matches boot::cv.glm()", {
    skip_on_cran()
    expect_equal(boot::cv.glm(Cara, m.caravan)$delta,
                 as.vector(unlist(cv(m.caravan, k="loo", criterion=mse)[1:2])))
  })
}

# test that parallel computations work on model list

if (Sys.getenv("RUN_ALL_CV_TESTS") == "true"){

data("Duncan", package="carData")
m1 <- lm(prestige ~ income + education, data=Duncan)
m2 <- lm(prestige ~ income + education + type, data=Duncan)
m3 <- lm(prestige ~ (income + education)*type, data=Duncan)

test_that("parallel computations work for cv.modList()", {
  expect_equal(cv(models(m1=m1, m2=m2, m3=m3),
                  data=Duncan, seed=7949),
               cv(models(m1=m1, m2=m2, m3=m3),
                  data=Duncan, seed=7949, ncores=2))
})

}

Try the cv package in your browser

Any scripts or data that you put into this service are public.

cv documentation built on Sept. 23, 2024, 1:08 a.m.