Nothing
# ----------------------
# Author: Andreas Alfons
# KU Leuven
# ----------------------
#' X-Y plots of cross-validation results
#'
#' Plot the (average) results from (repeated) \eqn{K}-fold
#' cross-validation on the \eqn{y}-axis against the respective models on the
#' \eqn{x}-axis.
#'
#' For objects with multiple columns of repeated cross-validation results,
#' conditional plots are produced.
#'
#' In most situations, the default behavior is to represent the
#' cross-validation results for each model by a vertical line segment (i.e., to
#' call the default method of \code{\link[lattice:xyplot]{xyplot}} with
#' \code{type = "h"}). However, the behavior is different for objects of class
#' \code{"cvTuning"} with only one numeric tuning parameter. In that
#' situation, the cross-validation results are plotted against the values of
#' the tuning parameter as a connected line (i.e., by using \code{type = "b"}).
#'
#' The default behavior can of course be overridden by supplying the
#' \code{type} argument (a full list of accepted values can be found in the
#' help file of \code{\link[lattice:panel.xyplot]{panel.xyplot}}).
#'
#' @method xyplot cv
#'
#' @param x an object inheriting from class \code{"cvSelect"} that contains
#' cross-validation results (note that this includes objects of class
#' \code{"cvTuning"}).
#' @param data currently ignored.
#' @param subset a character, integer or logical vector indicating the subset
#' of models for which to plot the cross-validation results.
#' @param select a character, integer or logical vector indicating the columns
#' of cross-validation results to be plotted.
#' @param seFactor a numeric value giving the multiplication factor of the
#' standard error for displaying error bars. Error bars can be suppressed by
#' setting this to \code{NA}.
#' @param \dots additional arguments to be passed to the \code{"formula"}
#' method of \code{\link[lattice:xyplot]{xyplot}}.
#'
#' @return An object of class \code{"trellis"} is returned invisibly. The
#' \code{\link[lattice:update.trellis]{update}} method can be used to update
#' components of the object and the \code{\link[lattice:print.trellis]{print}}
#' method (usually called by default) will plot it on an appropriate plotting
#' device.
#'
#' @author Andreas Alfons
#'
#' @seealso \code{\link{cvFit}}, \code{\link{cvSelect}},
#' \code{\link{cvTuning}}, \code{\link[=plot.cv]{plot}},
#' \code{\link[=dotplot.cvSelect]{dotplot}}, \code{\link[=bwplot.cv]{bwplot}},
#' \code{\link[=densityplot.cv]{densityplot}}
#'
#' @example inst/doc/examples/example-xyplot.R
#'
#' @keywords hplot
#'
#' @import lattice
#' @export
xyplot.cv <- function(x, data, select = NULL, seFactor = NA, ...) {
# construct data frame in lattice format and call internal function
tmp <- getLatticeData(x, select, reps=FALSE, seFactor=seFactor)
localXyplot(tmp$CV, tmp$lower, tmp$upper, ...)
}
#' @rdname xyplot.cv
#' @method xyplot cvSelect
#' @export
xyplot.cvSelect <- function(x, data, subset = NULL, select = NULL,
seFactor = x$seFactor, ...) {
# construct data frame in lattice format and call internal function
tmp <- getLatticeData(x, subset, select, reps=FALSE,
seFactor=seFactor, numericAsFactor=TRUE)
localXyplot(tmp$CV, tmp$lower, tmp$upper, ...)
}
#' @rdname xyplot.cv
#' @method xyplot cvTuning
#' @export
xyplot.cvTuning <- function(x, data, subset = NULL, select = NULL,
seFactor = x$seFactor, ...) {
# construct data frame in lattice format and call internal function
tmp <- getLatticeData(x, subset, select, reps=FALSE, seFactor=seFactor)
localXyplot(tmp$CV, tmp$lower, tmp$upper, x$tuning, ...)
}
# internal function for x-y plots
localXyplot <- function(CV, lower, upper, tuning = NULL, type,
xlab, ylab = "CV results", ...,
# the following arguments are defined so that they aren't supplied twice
x, formula, data, groups) {
# construct formula for call to xyplot()
cvNames <- names(CV)
# if(!("Fit" %in% cvNames)) CV$Fit <- rep.int(NA, nrow(CV))
if(!("Fit" %in% cvNames)) {
CV$Fit <- factor(rep.int(defaultFitNames(1), nrow(CV)))
}
conditional <- if("Name" %in% cvNames) "Name" else NULL
f <- getFormula("CV", "Fit", conditional)
# default plot type x-axis label
if(!is.null(tuning) && length(names(tuning)) == 1 && is.numeric(CV$Fit)) {
if(missing(type)) type <- "b"
if(missing(xlab)) xlab <- names(tuning)
} else {
if(missing(type)) type <- c("h", "p")
if(missing(xlab)) xlab <- NULL
}
# call xyplot()
xyplot(f, data=CV, lower=lower, upper=upper, prepanel=prepanelXyplot,
panel=panelXyplot, type=type, xlab=xlab, ylab=ylab, ...)
}
# prepanel function
prepanelXyplot <- function(x, y, lower, upper, subscripts, ...) {
tmp <- c(lower[subscripts], y, upper[subscripts])
tmp <- tmp[is.finite(tmp)]
if(length(tmp) > 0) {
lim <- range(tmp, finite=TRUE)
list(ylim=lim)
} else list()
}
# panel function
panelXyplot <- function(x, y, lower, upper, subscripts,
col = plot.line$col, angle=90, length=0.5,
unit="lines", ends, type, lty, lwd, ...) {
# initializations
plot.line <- trellis.par.get("plot.line")
box.umbrella <- trellis.par.get("box.umbrella")
if(missing(lty) || length(lty) == 0) {
lty <- c(plot.line$lty, box.umbrella$lty)
} else if(length(lty == 1)) lty = c(lty, box.umbrella$lty)
if(missing(lwd) || length(lwd) == 0) {
lwd <- c(plot.line$lwd, box.umbrella$lwd)
} else if(length(lwd == 1)) lwd = c(lwd, box.umbrella$lwd)
# create plot
panel.xyplot(x, y, subscripts=subscripts, type=type, col=col,
lty=lty[1], lwd=lwd[1], ...)
panel.arrows(x, lower[subscripts], x, upper[subscripts],
angle=angle, length=length, unit=unit, ends="both",
col=col, lty=lty[2], lwd=lwd[2], ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.