Nothing
library(cvms)
context("select_definitions()")
test_that("select_definitions() works with output from cross-validation", {
testthat::skip_on_cran()
# Create data ####
xpectr::set_test_seed(1)
dat <- participant.scores %>%
groupdata2::fold(k = 3, cat_col = "diagnosis")
mdata <- musicians %>%
groupdata2::fold(k = 3, cat_col = "Class")
cv_gauss <- suppressMessages(
cross_validate_fn(
data = dat,
formulas = "score ~ diagnosis + (1|session)",
model_fn = model_functions("lmer"),
predict_fn = predict_functions("lmer"),
hyperparameters = list("REML" = FALSE),
fold_cols = ".folds",
metrics = list("all" = TRUE),
type = "gaussian"
))
cv_binom <- suppressMessages(
cross_validate_fn(
data = dat,
formulas = "diagnosis ~ score + (1|session)",
model_fn = model_functions("glmer_binomial"),
predict_fn = predict_functions("glmer_binomial"),
fold_cols = ".folds",
metrics = list("all" = TRUE),
type = "binomial"
))
cv_multinom <- suppressMessages(
cross_validate_fn(
data = mdata,
formulas = "Class ~ Height + Bass + Guitar + Keys + Vocals + (1|Drums)",
model_fn = model_functions("svm_multinomial"),
predict_fn = predict_functions("svm_multinomial"),
hyperparameters = list("kernel" = "linear", "cost" = 10),
fold_cols = ".folds",
metrics = list("all" = TRUE),
type = "multinomial"
))
# Test select_definitions() ####
gaussian_definitions <- select_definitions(cv_gauss)
binomial_definitions <- select_definitions(cv_binom)
multinomial_definitions <- select_definitions(cv_multinom)
## Testing 'gaussian_definitions' ####
## Initially generated by xpectr
xpectr::set_test_seed(42)
# Testing class
expect_equal(
class(gaussian_definitions),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
gaussian_definitions[["Dependent"]],
"score",
fixed = TRUE)
expect_equal(
gaussian_definitions[["Fixed"]],
"diagnosis",
fixed = TRUE)
expect_equal(
gaussian_definitions[["Random"]],
"(1|session)",
fixed = TRUE)
expect_equal(
gaussian_definitions[["REML"]],
FALSE)
# Testing column names
expect_equal(
names(gaussian_definitions),
c("Dependent", "Fixed", "Random", "REML"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(gaussian_definitions),
c("character", "character", "character", "logical"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(gaussian_definitions),
c("character", "character", "character", "logical"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(gaussian_definitions),
c(1L, 4L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(gaussian_definitions)),
character(0),
fixed = TRUE)
## Finished testing 'gaussian_definitions' ####
## Testing 'binomial_definitions' ####
## Initially generated by xpectr
xpectr::set_test_seed(42)
# Testing class
expect_equal(
class(binomial_definitions),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
binomial_definitions[["Dependent"]],
"diagnosis",
fixed = TRUE)
expect_equal(
binomial_definitions[["Fixed"]],
"score",
fixed = TRUE)
expect_equal(
binomial_definitions[["Random"]],
"(1|session)",
fixed = TRUE)
# Testing column names
expect_equal(
names(binomial_definitions),
c("Dependent", "Fixed", "Random"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(binomial_definitions),
c("character", "character", "character"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(binomial_definitions),
c("character", "character", "character"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(binomial_definitions),
c(1L, 3L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(binomial_definitions)),
character(0),
fixed = TRUE)
## Finished testing 'binomial_definitions' ####
## Testing 'multinomial_definitions' ####
## Initially generated by xpectr
xpectr::set_test_seed(42)
# Testing class
expect_equal(
class(multinomial_definitions),
c("tbl_df", "tbl", "data.frame"),
fixed = TRUE)
# Testing column values
expect_equal(
multinomial_definitions[["Dependent"]],
"Class",
fixed = TRUE)
expect_equal(
multinomial_definitions[["Fixed"]],
"Height+Bass+Guitar+Keys+Vocals",
fixed = TRUE)
expect_equal(
multinomial_definitions[["Random"]],
"(1|Drums)",
fixed = TRUE)
expect_equal(
multinomial_definitions[["kernel"]],
"linear",
fixed = TRUE)
expect_equal(
multinomial_definitions[["cost"]],
10,
tolerance = 1e-4)
# Testing column names
expect_equal(
names(multinomial_definitions),
c("Dependent", "Fixed", "Random", "kernel", "cost"),
fixed = TRUE)
# Testing column classes
expect_equal(
xpectr::element_classes(multinomial_definitions),
c("character", "character", "character", "character", "numeric"),
fixed = TRUE)
# Testing column types
expect_equal(
xpectr::element_types(multinomial_definitions),
c("character", "character", "character", "character", "double"),
fixed = TRUE)
# Testing dimensions
expect_equal(
dim(multinomial_definitions),
c(1L, 5L))
# Testing group keys
expect_equal(
colnames(dplyr::group_keys(multinomial_definitions)),
character(0),
fixed = TRUE)
## Finished testing 'multinomial_definitions' ####
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.