Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, warning = FALSE, message = FALSE----------------------------------
library(dabestr)
## -----------------------------------------------------------------------------
set.seed(12345) # Fix the seed so the results are replicable.
N <- 40 # The number of samples taken from each population
# Create samples
size <- 1
c1 <- rbinom(N, size, prob = 0.2)
c2 <- rbinom(N, size, prob = 0.2)
c3 <- rbinom(N, size, prob = 0.8)
t1 <- rbinom(N, size, prob = 0.35)
t2 <- rbinom(N, size, prob = 0.2)
t3 <- rbinom(N, size, prob = 0.3)
t4 <- rbinom(N, size, prob = 0.4)
t5 <- rbinom(N, size, prob = 0.5)
t6 <- rbinom(N, size, prob = 0.6)
t7 <- c(rep(1, N))
# Add a `gender` column for coloring the data.
gender <- c(rep("Male", N / 2), rep("Female", N / 2))
# Add an `id` column for paired data plotting.
id <- 1:N
# Combine samples and gender into a DataFrame.
df <- tibble::tibble(
`Control 1` = c1, `Control 2` = c2, `Control 3` = c3,
`Test 1` = t1, `Test 2` = t2, `Test 3` = t3, `Test 4` = t4, `Test 5` = t5,
`Test 6` = t6, `Test 7` = t7,
Gender = gender, ID = id
)
df <- df %>%
tidyr::gather(key = Group, value = Success, -ID, -Gender)
## -----------------------------------------------------------------------------
knitr::kable(head(df))
## -----------------------------------------------------------------------------
two_groups_unpaired <- load(df,
x = Group, y = Success,
idx = c("Control 1", "Test 1"),
proportional = TRUE
)
print(two_groups_unpaired)
## -----------------------------------------------------------------------------
two_groups_unpaired.mean_diff <- mean_diff(two_groups_unpaired)
print(two_groups_unpaired.mean_diff)
## -----------------------------------------------------------------------------
two_groups_unpaired.cohens_h <- cohens_h(two_groups_unpaired)
print(two_groups_unpaired.cohens_h)
## -----------------------------------------------------------------------------
dabest_plot(two_groups_unpaired.mean_diff)
dabest_plot(two_groups_unpaired.cohens_h)
## ---- eval = FALSE------------------------------------------------------------
# dabest_plot(two_groups_unpaired.mean_diff, float_contrast = FALSE)
## ---- echo = FALSE------------------------------------------------------------
pp_plot <- dabest_plot(two_groups_unpaired.mean_diff,
float_contrast = FALSE,
swarm_y_text = 11, contrast_y_text = 11
)
cowplot::plot_grid(
plotlist = list(NULL, pp_plot, NULL),
nrow = 1,
ncol = 3,
rel_widths = c(2.5, 5, 2.5)
)
## -----------------------------------------------------------------------------
dabest_plot(two_groups_unpaired.mean_diff, raw_bar_width = 0.15)
## -----------------------------------------------------------------------------
dabest_plot(two_groups_unpaired.mean_diff,
swarm_label = "success", contrast_label = "difference"
)
## -----------------------------------------------------------------------------
two_groups_baseline.mean_diff <- load(df,
x = Group, y = Success,
idx = c("Control 1", "Test 1"),
proportional = TRUE,
paired = "baseline", id_col = ID
) %>%
mean_diff()
dabest_plot(two_groups_baseline.mean_diff)
## ---- eval = FALSE------------------------------------------------------------
# dabest_plot(two_groups_baseline.mean_diff, float_contrast = FALSE)
## ---- echo = FALSE------------------------------------------------------------
pp_plot <- dabest_plot(two_groups_baseline.mean_diff,
float_contrast = FALSE,
swarm_y_text = 11, contrast_y_text = 11,
raw_bar_width = 0.2
)
cowplot::plot_grid(
plotlist = list(NULL, pp_plot, NULL),
nrow = 1,
ncol = 3,
rel_widths = c(2.5, 5, 2.5)
)
## -----------------------------------------------------------------------------
multi_group_baseline.mean_diff <- load(df,
x = Group, y = Success,
idx = list(
c(
"Control 1", "Test 1",
"Test 2", "Test 3"
),
c(
"Test 4", "Test 5",
"Test 6"
)
),
proportional = TRUE,
paired = "baseline", id_col = ID
) %>%
mean_diff()
dabest_plot(multi_group_baseline.mean_diff,
swarm_y_text = 11, contrast_y_text = 11
)
## -----------------------------------------------------------------------------
multi_group_sequential.mean_diff <- load(df,
x = Group, y = Success,
idx = list(
c(
"Control 1", "Test 1",
"Test 2", "Test 3"
),
c(
"Test 4", "Test 5",
"Test 6"
)
),
proportional = TRUE,
paired = "sequential", id_col = ID
) %>%
mean_diff()
dabest_plot(multi_group_sequential.mean_diff,
swarm_y_text = 11, contrast_y_text = 11
)
## -----------------------------------------------------------------------------
multi_group_baseline_specify.mean_diff <- load(df,
x = Group, y = Success,
idx = c(
"Control 1", "Test 1",
"Test 2", "Test 3",
"Test 4", "Test 5",
"Test 6"
),
proportional = TRUE,
paired = "baseline", id_col = ID
) %>%
mean_diff()
dabest_plot(multi_group_baseline_specify.mean_diff,
swarm_y_text = 11, contrast_y_text = 11
)
## -----------------------------------------------------------------------------
separate_control.mean_diff <- load(df,
x = Group, y = Success,
idx = list(
c("Control 1", "Test 1"),
c("Test 2", "Test 3"),
c("Test 4", "Test 5", "Test 6")
),
proportional = TRUE,
paired = "sequential", id_col = ID
) %>%
mean_diff()
dabest_plot(separate_control.mean_diff, swarm_y_text = 11, contrast_y_text = 11)
dabest_plot(separate_control.mean_diff,
swarm_y_text = 11, contrast_y_text = 11,
sankey = FALSE
)
dabest_plot(separate_control.mean_diff,
swarm_y_text = 11, contrast_y_text = 11,
flow = FALSE
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.