Nothing
#### Apply valid effect sizes to dabest_obj
testthat::test_that("Able to apply all correct effect sizes to dabest_obj", {
np_dataset <- generate_non_proportional_dataset()
dabest_obj <- dabestr::load(data = np_dataset, x = Group, y = Measurement, idx = c("Control 1", "Test 1"))
expect_no_error(dabestr::mean_diff(dabest_obj))
expect_no_error(dabestr::median_diff(dabest_obj))
expect_no_error(dabestr::cohens_d(dabest_obj))
expect_no_error(dabestr::hedges_g(dabest_obj))
expect_no_error(dabestr::cliffs_delta(dabest_obj))
p_dataset <- generate_proportional_dataset()
dabest_prop_obj <- dabestr::load(
data = p_dataset, x = Group, y = Success, idx = c("Control 1", "Test 1"),
proportional = TRUE
)
expect_no_error(dabestr::cohens_h(dabest_prop_obj))
expect_no_error(dabestr::mean_diff(dabest_prop_obj))
dabest_mm_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = c("Control 1", "Test 1"),
minimeta = TRUE
)
expect_no_error(dabestr::mean_diff(dabest_mm_obj))
})
#### Detecting non-valid effect sizes for specific dabest_objs
testthat::test_that("Able to detect non-dabest_obj", {
expect_error(dabestr::mean_diff("a"), "dabest_obj must be a <dabest> obj")
})
testthat::test_that("Able to detect non-valid effect sizes", {
np_dataset <- generate_non_proportional_dataset()
dabest_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = c("Control 1", "Test 1"),
paired = "sequential", id_col = ID
)
expect_error(dabestr::cliffs_delta(dabest_obj), "`Cliffs' delta` cannot be used when paired is not NULL.")
p_dataset <- generate_proportional_dataset()
dabest_prop_obj <- dabestr::load(
data = p_dataset, x = Group, y = Success, idx = c("Control 1", "Test 1"),
proportional = TRUE
)
expect_error(
dabestr::median_diff(dabest_prop_obj),
"Other effect sizes besides `Cohens h` and `Mean difference` cannot be used when proportional is TRUE."
)
expect_error(
dabestr::cohens_d(dabest_prop_obj),
"Other effect sizes besides `Cohens h` and `Mean difference` cannot be used when proportional is TRUE."
)
expect_error(
dabestr::hedges_g(dabest_prop_obj),
"Other effect sizes besides `Cohens h` and `Mean difference` cannot be used when proportional is TRUE."
)
expect_error(
dabestr::cliffs_delta(dabest_prop_obj),
"Other effect sizes besides `Cohens h` and `Mean difference` cannot be used when proportional is TRUE."
)
})
#### Printing functions
testthat::test_that("Prints correct output for dabest_effectsize_obj object", {
#### 2GROUP ####
np_dataset <- generate_non_proportional_dataset()
dabest_effectsize_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = c("Control 1", "Test 1")
) %>% mean_diff()
expect_output(print(dabest_effectsize_obj), regexp = "Test 1 and Control 1")
expect_output(print(dabest_effectsize_obj), regexp = "5000 bootstrap samples")
#### MULTIGROUP BASELINE ####
dabest_effectsize_obj <- dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = list(c("Control 1", "Test 1"), c("Control 2", "Test 2", "Test 3")),
paired = "baseline", id_col = ID
) %>% mean_diff()
expect_output(print(dabest_effectsize_obj), regexp = "Test 1 and Control 1")
expect_output(print(dabest_effectsize_obj), regexp = "Test 2 and Control 2")
expect_output(print(dabest_effectsize_obj), regexp = "Test 3 and Control 2")
#### MULTIGROUP SEQUENTIAL ####
dabest_effectsize_obj <- dabestr::load(np_dataset,
x = Group, y = Measurement,
idx = list(c("Control 1", "Test 1"), c("Control 2", "Test 2", "Test 3")),
paired = "sequential", id_col = ID
) %>% mean_diff()
expect_output(print(dabest_effectsize_obj), regexp = "Test 1 and Control 1")
expect_output(print(dabest_effectsize_obj), regexp = "Test 2 and Control 2")
expect_output(print(dabest_effectsize_obj), regexp = "Test 3 and Test 2")
#### 2GROUP PROPORTION ####
p_dataset <- generate_proportional_dataset()
dabest_effectsize_obj <- dabestr::load(
data = p_dataset, x = Group, y = Success, idx = c("Control 2", "Test 2"),
proportional = TRUE
) %>% mean_diff()
expect_output(print(dabest_effectsize_obj), regexp = "Test 2 and Control 2")
#### MINIMETA ####
np_dataset <- generate_non_proportional_dataset()
dabest_effectsize_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = list(
c("Control 1", "Test 1"),
c("Control 2", "Test 2")
),
minimeta = TRUE
) %>% mean_diff()
expect_output(print(dabest_effectsize_obj), regexp = "Test 1 and Control 1")
expect_output(print(dabest_effectsize_obj), regexp = "Test 2 and Control 2")
#### DELTADELTA ####
dd_dataset <- generate_deltadelta_dataset()
dabest_effectsize_obj <- dabestr::load(dd_dataset,
x = Genotype, y = Measurement, delta2 = TRUE, experiment = Treatment,
idx = list(c("W Placebo", "M Placebo"), c("W Drug", "M Drug")), colour = Genotype
) %>% mean_diff()
expect_output(print(dabest_effectsize_obj), regexp = "M Placebo and W Placebo")
expect_output(print(dabest_effectsize_obj), regexp = "M Drug and W Drug")
#### ADJUSTING CI ####
dabest_effectsize_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = c("Control 1", "Test 1"), ci = 85
) %>% mean_diff()
expect_output(print(dabest_effectsize_obj), regexp = "85%CI")
#### ADJUSTING RESAMPLES ####
dabest_effectsize_obj <- dabestr::load(
data = np_dataset, x = Group, y = Measurement, idx = c("Control 1", "Test 1"), resamples = 3000
) %>% mean_diff()
expect_output(print(dabest_effectsize_obj), regexp = "3000 bootstrap samples")
#### CALCULATION OF PVALUES #####
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.