Working with dbarts Saved Trees

knitr::opts_chunk$set(echo = TRUE)

When a dbarts model is fit with the keepTrees option set to TRUE, the sampler will return those trees in a "flat" format that corresponds to a depth-first, left-hand traversal. Recursion can be used to map functions the nodes in this structure, aggregating statistics of interest.

Simulation

To illustrate, we generate a fake dataset according to the "Friedman 1" model [@frie:1991].

f <- function(x)
    10 * sin(pi * x[,1] * x[,2]) + 20 * (x[,3] - 0.5)^2 +
        10 * x[,4] + 5 * x[,5]

set.seed(99)
sigma <- 1.0
n     <- 100

x <- matrix(runif(n * 10), n, 10)
y <- rnorm(n, f(x), sigma)

data <- data.frame(x, y)

Model Fitting

In order to interrogate the trees, they must be saved when the model is fit. This is accomplished by setting:

In the context of our fake data, with small sample numbers for illustrative purposes, a model can be fit thusly:

library(dbarts, quietly = TRUE)

bartFit <- bart(
    y ~ ., data,
    ndpost = 4,   # number of posterior samples
    nskip = 1000, # number of "warmup" samples to discard
    nchain = 2,   # number of independent, parallel chains
    nthread = 1,  # units of parallel execution
    ntree = 3,    # number of trees per chain
    seed = 2,     # chosen to generate a deep tree
    keeptrees = TRUE,
    verbose = FALSE)

Extracting Trees

The extract function accepts as a type the value "trees". If present, the arguments chainNums, sampleNums, and/or treeNums can be used to extract only a subset of trees.

trees <- extract(bartFit, "trees")

Flattened Trees

The trees data frame corresponds to a depth-first, left-hand-side tree traversal.

print(head(trees, n = 10))

The columns refer to:

The mapping between the values of var and the variable names can be looked up in the internal copy of the data that the sampler stores. This can be found in a fitted model as the element fit$data@x, as seen below.

Tree Traversal

A useful technique for processing trees is recursion. By having the function return the number of nodes it has processed, it is possible to advance from the left-hand-side to the right by skipping ahead the appropriate number of rows. For example:

# Turns a flatted tree data frame into a list of lists, or a "natural" tree
# structure.
rebuildTree <- function(tree, object) {
    # Define a worker function that will be recursively called on every node.
    rebuildTreeRecurse <- function(tree) {
        node <- list(
            value = tree$value[1],
            n     = tree$n[1]
        )
        # Check node if is a leaf, and if so return early.
        if (tree$var[1] == -1) {
            node$n_nodes <- 1
            return(node)
        }

        node$var <- variableNames[tree$var[1]]

        # By removing the current row, we can recurse down the left branch.
        headOfLeftBranch <- tree[-1,]
        left <- rebuildTreeRecurse(headOfLeftBranch)
        n_nodes.left <- left$n_nodes
        left$n_nodes <- NULL
        node$left <- left

        # The right branch is obtained by advancing past the left nodes.
        headOfRightBranch <- tree[seq.int(2 + n_nodes.left, nrow(tree)),]
        right <- rebuildTreeRecurse(headOfRightBranch)
        n_nodes.right <- right$n_nodes
        right$n_nodes <- NULL
        node$right <- right

        node$n_nodes <- 1L + n_nodes.left + n_nodes.right

        return(node)
    }
    variableNames <- colnames(object$fit$data@x)

    result <- rebuildTreeRecurse(tree)
    result$n_nodes <- NULL
    return(result)
}

treeOfInterest <- subset(trees, chain == 1 & sample == 3 & tree == 1)
print(rebuildTree(treeOfInterest, bartFit))

Using a by statement, it is possible to "rebuild" all trees at once:

allTrees <- by(
    data    = trees,
    INDICES = trees[,c("chain", "sample", "tree")],
    FUN     = rebuildTree, 
    object  = bartFit)

# One way to index the result of this:
#    allTrees[chain = "1", sample = "2", tree = "3"]

Plotting Trees

dbartsSampler objects have a plotTree method that can be used to visualize single trees:

bartFit$fit$plotTree(chainNum = 1, sampleNum = 3, treeNum = 1)

Getting Tree Predictions

The following function traverses a flattened tree, splits observations while going the branches, and populates a vector giving the predicted value of that tree on input data. It requires a data in the same format as the fitted bart model so that it can evaluate the splits.

getPredictionsForTree <- function(tree, x) {
    predictions <- rep(NA_real_, nrow(x))

    getPredictionsForTreeRecursive <- function(tree, indices) {
        if (tree$var[1] == -1) {
            # Assigns in the calling environment by using <<-
            predictions[indices] <<- tree$value[1]
            return(1)
        }

        goesLeft <- x[indices, tree$var[1]] <= tree$value[1]
        headOfLeftBranch <- tree[-1,]
        n_nodes.left <- getPredictionsForTreeRecursive(
            headOfLeftBranch, indices[goesLeft])

        headOfRightBranch <- tree[seq.int(2 + n_nodes.left, nrow(tree)),]
        n_nodes.right <- getPredictionsForTreeRecursive(
            headOfRightBranch, indices[!goesLeft])

        return(1 + n_nodes.left + n_nodes.right)
    }

    getPredictionsForTreeRecursive(tree, seq_len(nrow(x)))

    return(predictions)
}

getPredictionsForTree(treeOfInterest, bartFit$fit$data@x[1:5,])

A by statement can be used to obtain all predictions for all trees.

Advanced Traversal

The following function can be used to map an arbitrary function over a tree.

mapOverNodes <- function(tree, f, ...) {
    mapOverNodesRecurse <- function(tree, depth, f, ...) {
        node <- list(
            value = tree$value[1],
            n = tree$n[1],
            depth = depth
        )
        if (tree$var[1] == -1) {
            node$n_nodes <- 1
            node$f.x <- f(node, ...)
            return(node)
        }
        node$var <- tree$var[1]
        node$f.x <- f(node, ...)

        headOfLeftBranch <- tree[-1,]
        left <- mapOverNodesRecurse(headOfLeftBranch, depth + 1, f, ...)
        n_nodes.left <- left$n_nodes
        left$n_nodes <- NULL
        node$left <- left


        headOfRightBranch <- tree[seq.int(2 + n_nodes.left, nrow(tree)),]
        right <- mapOverNodesRecurse(headOfRightBranch, depth + 1, f, ...)
        n_nodes.right <- right$n_nodes
        right$n_nodes <- NULL
        node$right <- right

        node$n_nodes <- 1 + n_nodes.left + n_nodes.right
        return(node)
    }
    result <- mapOverNodesRecurse(tree, 1, f, ...)
    result$n_nodes <- NULL
    return(result)
}

As an example of its usage, the following function aggregates all ancestor/descendant relationships in a tree. In a data object - here an R environment - it keeps track of the current state of traversal. This includes the variables that have been used for splits above the current node and also includes the current node's depth, which is used to detect backtracking.

observeInteractions <- function(node, ...) {
    if (is.null(node$var)) return(NULL)

    interactionData <- list(...)$interactionData
    # Make the current node visibile inside the environment.
    interactionData$node <- node
    with(interactionData, {
        if (node$depth <= currentDepth) {
            # If true, we have backtracked to go down the right branch, so we
            # remove the variables from the left branch.
            currentVariables <- currentVariables[seq_len(node$depth - 1)]
        }
        if (length(interactionData$currentVariables) > 0) {
            # This is a brute-force way of updating the following indices,
            # relying on the column-major storage order that R uses:
            #     hasInteraction[currentVariables,,drop = FALSE][,node$var]
            updateIndices <- currentVariables +
                (node$var - 1) * nrow(hasInteraction)
            hasInteraction[updateIndices] <- TRUE
        }
        currentVariables <- c(currentVariables, node$var)
        currentDepth <- node$depth
    })
    rm("node", envir = interactionData)

    # Since the function is used for its side effects, there isn't a return
    # value.
    return(NULL)
}

numVariables  <- ncol(bartFit$fit$data@x)
variableNames <- colnames(bartFit$fit$data@x)

# Define this as an environment as they are mutable
interactionData <- list2env(list(
    currentDepth = 0,
    currentVariables = integer(),
    hasInteraction = matrix(
        data = FALSE,
        ncol = numVariables, nrow = numVariables,
        dimnames = list(ancestor = variableNames, descendant = variableNames)
    )
))

invisible(mapOverNodes(
    treeOfInterest,
    observeInteractions,
    interactionData = interactionData
))

After execution, the boolean matrix in the interaction data environment will contain all ancestor/descendant relationships in this tree.

print(interactionData$hasInteraction)

Finally, the entire process can be wrapped in a by statement and the results aggregated across all trees in order to count the number of times variables have specific relationships.

References



Try the dbarts package in your browser

Any scripts or data that you put into this service are public.

dbarts documentation built on May 29, 2024, 3:31 a.m.