Nothing

```
#######################################################################
# dbscan - Density Based Clustering of Applications with Noise
# and Related Algorithms
# Copyright (C) 2015 Michael Hahsler, Matt Piekenbrock
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#' Reachability Distances
#'
#' Reachability distances can be plotted to show the hierarchical relationships between data points.
#' The idea was originally introduced by Ankerst et al (1999) for [OPTICS]. Later,
#' Sanders et al (2003) showed that the visualization is useful for other hierarchical
#' structures and introduced an algorithm to convert [dendrogram] representation to
#' reachability plots.
#'
#' A reachability plot displays the points as vertical bars, were the height is the
#' reachability distance between two consecutive points.
#' The central idea behind reachability plots is that the ordering in which
#' points are plotted identifies underlying hierarchical density
#' representation as mountains and valleys of high and low reachability distance.
#' The original ordering algorithm OPTICS as described by Ankerst et al (1999)
#' introduced the notion of reachability plots.
#'
#' OPTICS linearly orders the data points such that points
#' which are spatially closest become neighbors in the ordering. Valleys
#' represent clusters, which can be represented hierarchically. Although the
#' ordering is crucial to the structure of the reachability plot, its important
#' to note that OPTICS, like DBSCAN, is not entirely deterministic and, just
#' like the dendrogram, isomorphisms may exist
#'
#' Reachability plots were shown to essentially convey the same information as
#' the more traditional dendrogram structure by Sanders et al (2003). An dendrograms
#' can be converted into reachability plots.
#'
#' Different hierarchical representations, such as dendrograms or reachability
#' plots, may be preferable depending on the context. In smaller datasets,
#' cluster memberships may be more easily identifiable through a dendrogram
#' representation, particularly is the user is already familiar with tree-like
#' representations. For larger datasets however, a reachability plot may be
#' preferred for visualizing macro-level density relationships.
#'
#' A variety of cluster extraction methods have been proposed using
#' reachability plots. Because both cluster extraction depend directly on the
#' ordering OPTICS produces, they are part of the [optics()] interface.
#' Nonetheless, reachability plots can be created directly from other types of
#' linkage trees, and vice versa.
#'
#' _Note:_ The reachability distance for the first point is by definition not defined
#' (it has no preceeding point).
#' Also, the reachability distances can be undefined when a point does not have enough
#' neighbors in the epsilon neighborhood. We represent these undefined cases as `Inf`
#' and represent them in the plot as a dashed line.
#'
#' @name reachability
#' @aliases reachability reachability_plot print.reachability
#'
#' @param object any object that can be coerced to class
#' `reachability`, such as an object of class [optics] or [stats::dendrogram].
#' @param x object of class `reachability`.
#' @param order_labels whether to plot text labels for each points reachability
#' distance.
#' @param xlab x-axis label.
#' @param ylab y-axis label.
#' @param main Title of the plot.
#' @param ... graphical parameters are passed on to `plot()`,
#' or arguments for other methods.
#'
#' @return An object of class `reachability` with components:
#' \item{order }{order to use for the data points in `x`. }
#' \item{reachdist }{reachability distance for each data point in `x`. }
#'
#' @author Matthew Piekenbrock
#' @seealso [optics()], [as.dendrogram()], and [stats::hclust()].
#' @references Ankerst, M., M. M. Breunig, H.-P. Kriegel, J. Sander (1999).
#' OPTICS: Ordering Points To Identify the Clustering Structure. _ACM
#' SIGMOD international conference on Management of data._ ACM Press. pp.
#' 49--60.
#'
#' Sander, J., X. Qin, Z. Lu, N. Niu, and A. Kovarsky (2003). Automatic
#' extraction of clusters from hierarchical clustering representations.
#' _Pacific-Asia Conference on Knowledge Discovery and Data Mining._
#' Springer Berlin Heidelberg.
#' @keywords model clustering hierarchical clustering
#' @examples
#' set.seed(2)
#' n <- 20
#'
#' x <- cbind(
#' x = runif(4, 0, 1) + rnorm(n, sd = 0.1),
#' y = runif(4, 0, 1) + rnorm(n, sd = 0.1)
#' )
#'
#' plot(x, xlim = range(x), ylim = c(min(x) - sd(x), max(x) + sd(x)), pch = 20)
#' text(x = x, labels = 1:nrow(x), pos = 3)
#'
#' ### run OPTICS
#' res <- optics(x, eps = 10, minPts = 2)
#' res
#'
#' ### plot produces a reachability plot.
#' plot(res)
#'
#' ### Manually extract reachability components from OPTICS
#' reach <- as.reachability(res)
#' reach
#'
#' ### plot still produces a reachability plot; points ids
#' ### (rows in the original data) can be displayed with order_labels = TRUE
#' plot(reach, order_labels = TRUE)
#'
#' ### Reachability objects can be directly converted to dendrograms
#' dend <- as.dendrogram(reach)
#' dend
#' plot(dend)
#'
#' ### A dendrogram can be converted back into a reachability object
#' plot(as.reachability(dend))
NULL
#' @rdname reachability
#' @export
print.reachability <- function(x, ...) {
avg_reach <- mean(x$reachdist[which(x$reachdist != Inf)], na.rm = T)
cat(
"Reachability plot collection for ",
length(x$order),
" objects.\n",
"Avg minimum reachability distance: ",
avg_reach,
"\n",
"Available Fields: order, reachdist",
sep = ""
)
}
#' @rdname reachability
#' @export
plot.reachability <- function(x,
order_labels = FALSE,
xlab = "Order",
ylab = "Reachability dist.",
main = "Reachability Plot",
...) {
if (is.null(x$order) ||
is.null(x$reachdist))
stop("reachability objects need 'reachdist' and 'order' fields")
reachdist <- x$reachdist[x$order]
plot(
reachdist,
xlab = xlab,
ylab = ylab,
main = main,
type = "h",
...
)
abline(v = which(is.infinite(reachdist)),
lty = 3)
if (order_labels) {
text(
x = 1:length(x$order),
y = reachdist,
labels = x$order,
pos = 3
)
}
}
#' @rdname reachability
#' @export
as.reachability <-
function(object, ...)
UseMethod("as.reachability")
#' @rdname reachability
#' @export
as.reachability.dendrogram <- function(object, ...) {
if (!inherits(object, "dendrogram"))
stop("The as.reachability method requires a dendrogram object.")
# Rcpp doesn't seem to import attributes well for vectors
fix_x <- dendrapply(object, function(leaf) {
new_leaf <-
as.list(leaf)
attributes(new_leaf) <- attributes(leaf)
new_leaf
})
res <- dendrogram_to_reach(fix_x)
# Refix the ordering
res$reachdist <- res$reachdist[order(res$order)]
return(res)
}
```

**Any scripts or data that you put into this service are public.**

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.