Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(ddplot)
## ----fig.align='center', message=FALSE, warning=FALSE-------------------------
library(ggplot2) # needed for the mpg data frame
scatterPlot(
data = mpg,
x = "hwy",
y = "cty",
xtitle = "hwy variable",
ytitle = "cty variable",
title = "cty and hwy relationship",
titleFontSize = 20
)
## ---- fig.align='center'------------------------------------------------------
scatterPlot(
data = mpg,
x = "displ",
y = "cty",
col = "tomato",
bgcol = "pink",
size = 3,
stroke = "royalblue",
strokeWidth = 1,
xtitle = "displ variable",
ytitle = "cty variable",
xticks = 3,
yticks = 3)
## -----------------------------------------------------------------------------
histogram(
x = mpg$hwy,
bins = 20,
fill = "crimson",
stroke = "white",
strokeWidth = 1,
title = "Distribution of the hwy variable",
width = "20",
height = "10"
)
## -----------------------------------------------------------------------------
animatedHistogram(
x = mpg$hwy,
duration = 2000,
delay = 100,
fill = "lime",
stroke = "white",
bgcol = "white"
)
## ----fig.align='center', message=FALSE, warning=FALSE-------------------------
library(dplyr)
mpg %>% group_by(manufacturer) %>%
summarise(mean_cty = mean(cty)) %>%
barChart(
x = "manufacturer",
y = "mean_cty",
xFontSize = 10,
yFontSize = 10,
fill = "orange",
strokeWidth = 2,
ytitle = "average cty value",
title = "Average City Miles per Gallon by manufacturer"
)
## ----message=FALSE, warning=FALSE---------------------------------------------
mpg %>% group_by(manufacturer) %>%
summarise(mean_cty = mean(cty)) %>%
barChart(
x = "manufacturer",
y = "mean_cty",
sort = "ascending",
xFontSize = 10,
yFontSize = 10,
fill = "orange",
strokeWidth = 1,
ytitle = "average cty value",
title = "Average City Miles per Gallon by manufacturer",
titleFontSize = 16
)
## -----------------------------------------------------------------------------
mpg %>% group_by(manufacturer) %>%
summarise(mean_cty = mean(cty)) %>%
horzBarChart(
label = "manufacturer",
value = "mean_cty",
sort = "ascending",
labelFontSize = 10,
valueFontSize = 10,
fill = "orange",
stroke = "crimson",
strokeWidth = 1,
valueTitle = "average cty value",
title = "Average City Miles per Gallon by manufacturer",
titleFontSize = 16
)
## -----------------------------------------------------------------------------
mpg %>% group_by(manufacturer) %>%
summarise(mean_cty = mean(cty)) %>%
horzBarChart(
label = "manufacturer",
value = "mean_cty",
sort = "descending",
labelFontSize = 10,
valueFontSize = 10,
bgcol = "black",
axisCol = "white",
fill = "white",
stroke = "white",
strokeWidth = 1,
valueTitle = "average cty value",
labelTitle = "Manufacturers",
title = "Average City Miles per Gallon by manufacturer",
titleFontSize = 16
)
## -----------------------------------------------------------------------------
mpg %>% group_by(drv) %>%
summarise(median_cty = median(cty)) %>%
lollipopChart(
x = "drv",
y = "median_cty",
sort = "ascending",
xtitle = "drv variable",
ytitle = "median cty",
title = "Median cty per drv",
xFontSize = 20
)
## -----------------------------------------------------------------------------
mpg %>% filter(year == 2008) %>%
lollipopChart(
x = "manufacturer",
y = "hwy",
circleFill = 'red',
circleStroke = 'orange',
circleRadius = 5,
sort = "none",
xFontSize = 10
)
## -----------------------------------------------------------------------------
mpg %>% group_by(manufacturer) %>%
summarise(median_cty = median(cty)) %>%
horzLollipop(
label = "manufacturer",
value = "median_cty",
sort = "descending")
## -----------------------------------------------------------------------------
mpg %>% filter(year == 2008) %>%
horzLollipop(
label = "manufacturer",
value = "hwy",
circleFill = 'red',
circleStroke = 'orange',
circleRadius = 5,
sort = "none"
)
## -----------------------------------------------------------------------------
# starwars is part of the dplyr data frame
mini_starwars <- starwars %>% tidyr::drop_na(mass) %>%
sample_n(size = 5) # getting 5 random values
pieChart(
data = mini_starwars,
value = "mass",
label = "name"
)
## -----------------------------------------------------------------------------
pieChart(
data = mini_starwars,
value = "mass",
label = "name",
padRadius = 200,
padAngle = 0.1,
cornerRadius = 50,
innerRadius = 10
)
## -----------------------------------------------------------------------------
pieChart(
data = mini_starwars,
value = "mass",
label = "name",
innerRadius = 120,
cornerRadius = 20,
title = "5 Starwars characters ranked by their mass",
titleFontSize = 16,
bgcol = "yellow"
)
## -----------------------------------------------------------------------------
# 1. converting AirPassengers to a tidy data frame
airpassengers <- data.frame(
passengers = as.matrix(AirPassengers),
date= zoo::as.Date(time(AirPassengers))
)
# 2. plotting the line chart
lineChart(
data = airpassengers,
x = "date",
y = "passengers"
)
## -----------------------------------------------------------------------------
lineChart(
data = airpassengers,
x = "date",
y = "passengers",
curve = "curveStep"
)
## -----------------------------------------------------------------------------
lineChart(
data = airpassengers,
x = "date",
y = "passengers",
curve = "curveCardinal"
)
## -----------------------------------------------------------------------------
lineChart(
data = airpassengers,
x = "date",
y = "passengers",
curve = "curveBasis"
)
## -----------------------------------------------------------------------------
animLineChart(
data = airpassengers,
x = "date",
y = "passengers",
duration = 10000, # in milliseconds (10 seconds)
curve = "curveCardinal"
)
## -----------------------------------------------------------------------------
# 1. converting AirPassengers to a tidy data frame
airpassengers <- data.frame(
passengers = as.matrix(AirPassengers),
date= zoo::as.Date(time(AirPassengers))
)
# 2. plotting the area chart
areaChart(
data = airpassengers,
x = "date",
y = "passengers",
fill = "purple",
bgcol = "white"
)
## -----------------------------------------------------------------------------
airpassengers <- data.frame(
passengers_lower = as.matrix(AirPassengers),
passengers_upper = as.matrix(AirPassengers) + 40,
date= zoo::as.Date(time(AirPassengers))
)
areaBand(
data = airpassengers,
x = "date",
yLower = "passengers_lower",
yUpper = "passengers_upper",
fill = "yellow",
stroke = "black"
)
## -----------------------------------------------------------------------------
data <- data.frame(
date = c(
"2000-01-01", "2000-02-01", "2000-03-01", "2000-04-01",
"2000-05-01", "2000-06-01", "2000-07-01",
"2000-08-01", "2000-09-01", "2000-10-01"
),
Trade = c(
2000,1023, 983, 2793, 1821, 1837, 1792, 1853, 791, 739
),
Manufacturing = c(
734, 694, 739, 736, 685, 621, 708, 685, 667, 693
),
Leisure = c(
1782, 1779, 1789, 658, 675, 833, 786, 675, 636, 691
),
Agriculture = c(
655, 587,623, 517, 561, 2545, 636, 584, 559, 2504
)
)
data
## -----------------------------------------------------------------------------
stackedAreaChart(
data = data,
x = "date",
legendTextSize = 14
)
## -----------------------------------------------------------------------------
stackedAreaChart(
data = data,
x = "date",
legendTextSize = 14,
curve = "curveCardinal",
colorCategory = "Accent",
bgcol = "white",
stroke = "black",
strokeWidth = 1
)
## -----------------------------------------------------------------------------
stackedAreaChart(
data = data,
x = "date",
legendTextSize = 14,
curve = "curveBasis",
colorCategory = "Set3",
bgcol = "black",
axisCol = "white",
xticks = 4,
stroke = "black"
)
## ---- eval = FALSE------------------------------------------------------------
# <<<<<<< HEAD
# gapminder_subset <- gapminder::gapminder %>%
# select(country, year, pop) %>%
# filter(country %in% c("Japan", "Mexico", "Germany", "Brazil", "Philippines", "Vietnam")) %>%
# mutate(pop = pop/1e6)
# =======
# gapminder_subset <- gapminder::gapminder %>% select(country, year, pop) %>%
# filter(country %in% c("Japan", "Mexico", "Germany", "Brazil", "Mexico", "Philippines", "Vietnam")) %>%
# mutate(pop = pop/1e6)
# >>>>>>> 6bab1415a132b17bda7192e7e2e63758614d5161
#
# gapminder_subset %>%
# slice_sample(n = 10)
#
# #> year pop country
# #> 1 2007 91.07729 Philippines
# #> 2 1997 76.04900 Vietnam
# #> 3 1972 107.18827 Japan
# #> 4 1967 39.46391 Vietnam
# #> 5 1952 30.14432 Mexico
# #> 6 1987 142.93808 Brazil
# #> 7 1997 168.54672 Brazil
# #> 8 1962 41.12148 Mexico
# #> 9 1952 69.14595 Germany
# #> 10 1957 91.56301 Japan
## ---- echo = FALSE------------------------------------------------------------
gapminder_subset <- data.frame(
year = c(
1952L,1957L,1962L,1967L,1972L,1977L,
1982L,1987L,1992L,1997L,2002L,2007L,1952L,1957L,1962L,
1967L,1972L,1977L,1982L,1987L,1992L,1997L,2002L,2007L,
1952L,1957L,1962L,1967L,1972L,1977L,1982L,1987L,1992L,
1997L,2002L,2007L,1952L,1957L,1962L,1967L,1972L,1977L,
1982L,1987L,1992L,1997L,2002L,2007L,1952L,1957L,1962L,
1967L,1972L,1977L,1982L,1987L,1992L,1997L,2002L,2007L,
1952L,1957L,1962L,1967L,1972L,1977L,1982L,1987L,1992L,
1997L,2002L,2007L
),
pop = c(
56.60256,65.551171,76.03939,88.049823,
100.840058,114.313951,128.962939,142.938076,155.975974,
168.546719,179.914212,190.010647,69.145952,71.019069,73.739117,
76.368453,78.717088,78.160773,78.335266,77.718298,
80.597764,82.011073,82.350671,82.400996,86.459025,91.563009,
95.831757,100.825279,107.188273,113.872473,118.454974,
122.091325,124.329269,125.956499,127.065841,127.467972,30.144317,
35.015548,41.121485,47.995559,55.984294,63.759976,
71.640904,80.122492,88.11103,95.895146,102.479927,108.700891,
22.438691,26.072194,30.325264,35.3566,40.850141,46.850962,
53.456774,60.017788,67.185766,75.012988,82.995088,91.077287,
26.246839,28.998543,33.79614,39.46391,44.655014,50.533506,
56.142181,62.826491,69.940728,76.048996,80.908147,
85.262356
),
country = as.factor(c(
"Brazil","Brazil",
"Brazil","Brazil","Brazil","Brazil","Brazil",
"Brazil","Brazil","Brazil","Brazil","Brazil","Germany",
"Germany","Germany","Germany","Germany",
"Germany","Germany","Germany","Germany","Germany",
"Germany","Germany","Japan","Japan","Japan","Japan",
"Japan","Japan","Japan","Japan","Japan","Japan",
"Japan","Japan","Mexico","Mexico","Mexico",
"Mexico","Mexico","Mexico","Mexico","Mexico",
"Mexico","Mexico","Mexico","Mexico","Philippines",
"Philippines","Philippines","Philippines","Philippines",
"Philippines","Philippines","Philippines",
"Philippines","Philippines","Philippines","Philippines",
"Vietnam","Vietnam","Vietnam","Vietnam",
"Vietnam","Vietnam","Vietnam","Vietnam","Vietnam",
"Vietnam","Vietnam","Vietnam"
))
)
## -----------------------------------------------------------------------------
gapminder_subset %>%
barChartRace(
x = "pop",
y = "country",
time = "year",
ytitle = "Country",
xtitle = "Population (in millions)",
title = "Bar chart race of country populations"
)
## -----------------------------------------------------------------------------
gapminder_subset %>%
barChartRace(
x = "pop",
y = "country",
time = "year",
transitionDur = 1000,
frameDur = 0,
ytitle = "Country",
xtitle = "Population (in millions)",
title = "Bar chart race of country populations"
)
## -----------------------------------------------------------------------------
gapminder_subset %>%
barChartRace(
x = "pop",
y = "country",
time = "year",
ease = "BackInOut",
ytitle = "Country",
xtitle = "Population (in millions)",
title = "Bar chart race of country populations",
timeLabelOpts = list(
size = 40,
prefix = "Year: ",
xOffset = 0.2
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.