Description Usage Arguments Details Value Author(s) References Examples
Performs data driven smooth test for composite hypothesis of exponentiality.
1 2 | ddst.exp.test(x, base = ddst.base.legendre, c = 100, B = 1000, compute.p = F,
Dmax = 5, ...)
|
x |
a (non-empty) numeric vector of data values. |
base |
a function which returns orthogonal system, might be |
c |
a parameter for model selection rule, see package description. |
B |
an integer specifying the number of replicates used in p-value computation. |
compute.p |
a logical value indicating whether to compute a p-value. |
Dmax |
an integer specifying the maximum number of coordinates, only for advanced users. |
... |
further arguments. |
Null density is given by $f(z;gamma) = exp(-z/gamma)$ for z >= 0 and 0 otherwise.
Modelling alternatives similarly as in Kallenberg and Ledwina (1997 a,b), e.g., and estimating $gamma$ by $tilde gamma= 1/n sum_i=1^n Z_i$ yields the efficient score vector $l^*(Z_i;tilde gamma)=(phi_1(F(Z_i;tilde gamma)),...,phi_k(F(Z_i;tilde gamma)))$, where $phi_j$'s are jth degree orthonormal Legendre polynomials on [0,1] or cosine functions $sqrt(2) cos(pi j x), j>=1$, while $F(z;gamma)$ is the distribution function pertaining to $f(z;gamma)$.
The matrix $[I^*(tilde gamma)]^-1$ does not depend on $tilde gamma$ and is calculated for succeding dimensions k using some recurrent relations for Legendre's polynomials and computed in a numerical way in case of cosine basis. In the implementation the default value of c in $T^*$ is set to be 100.
Therefore, $T^*$ practically coincides with S1 considered in Kallenberg and Ledwina (1997 a).
For more details see: http://www.biecek.pl/R/ddst/description.pdf.
An object of class htest
statistic |
the value of the test statistic. |
parameter |
the number of choosen coordinates (k). |
method |
a character string indicating the parameters of performed test. |
data.name |
a character string giving the name(s) of the data. |
p.value |
the p-value for the test, computed only if |
Przemyslaw Biecek and Teresa Ledwina
Kallenberg, W.C.M., Ledwina, T. (1997 a). Data driven smooth tests for composite hypotheses: Comparison of powers. J. Statist. Comput. Simul. 59, 101–121.
Kallenberg, W.C.M., Ledwina, T. (1997 b). Data driven smooth tests when the hypothesis is composite. J. Amer. Statist. Assoc. 92, 1094–1104.
1 2 3 4 5 6 7 8 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.