Description Usage Arguments Details Value Author(s) References Examples
Performs data driven smooth test for composite hypothesis of extreme value distribution.
1 2 | ddst.extr.test(x, base = ddst.base.legendre, c = 100, B = 1000, compute.p = F,
Dmax = 5, ...)
|
x |
a (non-empty) numeric vector of data values. |
base |
a function which returns orthogonal system, might be |
c |
a parameter for model selection rule, see package description. |
B |
an integer specifying the number of replicates used in p-value computation. |
compute.p |
a logical value indicating whether to compute a p-value. |
Dmax |
an integer specifying the maximum number of coordinates, only for advanced users. |
... |
further arguments. |
Null density is given by $f(z;gamma)=1/gamma_2 exp((z-gamma_1)/gamma_2- exp((z-gamma_1)/gamma_2))$, z in R.
We model alternatives similarly as in Kallenberg and Ledwina (1997) and Janic-Wroblewska (2004) using Legendre's polynomials or cosines. The parameter $gamma=(gamma_1,gamma_2)$ is estimated by $tilde gamma=(tilde gamma_1,tilde gamma_2)$, where $tilde gamma_1=-1/n sum_i=1^n Z_i + varepsilon G$, where $varepsilon approx 0.577216 $ is the Euler constant and $ G = tilde gamma_2 = [n(n-1) ln2]^-1sum_1<= j < i <= n(Z_n:i^o - Z_n:j^o) $ while $Z_n:1^o <= ... <= Z_n:n^o$ are ordered variables $-Z_1,...,-Z_n$, cf Hosking et al. (1985). The above yields auxiliary test statistic $W_k^*(tilde gamma)$ described in details in Janic and Ledwina (2008), in case when Legendre's basis is applied.
The related matrix $[I^*(tilde gamma)]^-1$ does not depend on $tilde gamma$ and is calculated for succeding dimensions k using some recurrent relations for Legendre's polynomials and numerical methods for cosine functions. In the implementation the default value of c in $T^*$ was fixed to be 100. Hence, $T^*$ is Schwarz-type model selection rule. The resulting data driven test statistic for extreme value distribution is $W_T^*=W_T^*(tilde gamma)$.
For more details see: http://www.biecek.pl/R/ddst/description.pdf.
An object of class htest
statistic |
the value of the test statistic. |
parameter |
the number of choosen coordinates (k). |
method |
a character string indicating the parameters of performed test. |
data.name |
a character string giving the name(s) of the data. |
p.value |
the p-value for the test, computed only if |
Przemyslaw Biecek and Teresa Ledwina
Hosking, J.R.M., Wallis, J.R., Wood, E.F. (1985). Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27, 251–261.
Janic-Wroblewska, A. (2004). Data-driven smooth test for extreme value distribution. Statistics 38, 413–426.
Janic, A. and Ledwina, T. (2008). Data-driven tests for a location-scale family revisited. J. Statist. Theory. Pract. Special issue on Modern Goodness of Fit Methods. accepted..
Kallenberg, W.C.M., Ledwina, T. (1997). Data driven smooth tests for composite hypotheses: Comparison of powers. J. Statist. Comput. Simul. 59, 101–121.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(evd)
# for given vector of 19 numbers
z = c(13.41, 6.04, 1.26, 3.67, -4.54, 2.92, 0.44, 12.93, 6.77, 10.09,
4.10, 4.04, -1.97, 2.17, -5.38, -7.30, 4.75, 5.63, 8.84)
ddst.extr.test(z, compute.p=TRUE)
# H0 is true
x = -qgumbel(runif(100),-1,1)
ddst.extr.test (x, compute.p = TRUE)
# H0 is false
x = rexp(80,4)
ddst.extr.test (x, compute.p = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.