Nothing
test_that("1-dimensional ULSIF estimation and prediction works", {
set.seed(1)
dr <- ulsif(numerator_small$x3, denominator_small$x3)
summdr <- summary(dr)
expect_s3_class(dr, "ulsif")
expect_s3_class(summdr, "summary.ulsif")
expect_invisible(print(summdr))
expect_equal(summdr$centers, dr$centers)
expect_equal(summdr$alpha_opt, dr$alpha_opt)
expect_equal(summdr$sigma_opt, dr$sigma_opt)
expect_equal(summdr$lambda_opt, dr$lambda_opt)
pred <- predict(dr)[, , 1]
expect_gt(mean(log(pmax(1e-3, pred))), 0)
expect_lt(mean(log(pmax(1e-3, predict(dr, denominator_small$x3)[,,1]))), 0)
dr <- ulsif(numerator_small$x3, denominator_small$x3, intercept = FALSE,
lambda = 0.1, sigma = 2, centers = numerator_small$x3,
scale = NULL)
summdr <- summary(dr, test = TRUE)
expect_lte(summdr$p_value, 1)
expect_invisible(print(dr))
expect_invisible(print(summdr))
Knu <- distance(
as.matrix(numerator_small$x3),
as.matrix(numerator_small$x3)
) |> kernel_gaussian(2)
Kde <- distance(
as.matrix(denominator_small$x3),
as.matrix(numerator_small$x3)
) |> kernel_gaussian(2)
expect_equal(solve(crossprod(Kde)/nrow(Kde) + 0.1 * diag(ncol(Kde)), colMeans(Knu)), dr$alpha_opt)
})
test_that("multidimensional ULSIF estimation, prediction works", {
set.seed(1)
dr <- ulsif(numerator_small, denominator_small)
expect_s3_class(dr, "ulsif")
expect_gt(mean(predict(dr)[,,1]), 1)
expect_lt(mean(predict(dr, denominator_small)[,,1]), 1)
dr <- ulsif(numerator_small, denominator_small, intercept = FALSE,
lambda = 0.1, sigma = 2, centers = numerator_small,
scale = NULL)
expect_type(
plot(dr),
"list"
) |> suppressWarnings()
expect_type(
plot(dr, samples = "numerator"),
"list"
) |> suppressWarnings()
expect_type(
plot(dr, binwidth = 0.5),
"list"
) |> suppressWarnings()
expect_type(
plot(dr, bins = 30),
"list"
) |> suppressWarnings()
expect_no_warning(
plot(dr, logscale = FALSE)
)
expect_type(
plot_univariate(dr),
"list"
) |> suppressWarnings()
expect_type(
plot_univariate(dr, vars = c("x1", "x2"), samples = "denominator",
logscale = FALSE, grid = TRUE),
"list"
)
expect_type(
plot_univariate(dr, grid = TRUE, sample.facet = TRUE,
logscale = FALSE, nrow.panel = 3),
"list"
)
expect_error(
plot_univariate(dr, vars = c("a", "b"))
)
expect_type(
plot_bivariate(dr),
"list"
) |> suppressWarnings()
expect_type(
plot_bivariate(dr, vars = c("x1", "x2", "x3"), samples = "numerator",
logscale = FALSE, grid = TRUE),
"list"
)
expect_error(
plot_bivariate(dr, vars = c("x1", "b"))
)
expect_type(predict(dr, sigma = 3), "double")
Knu <- distance(
model.matrix(~., numerator_small),
model.matrix(~., numerator_small)
) |> kernel_gaussian(2)
Kde <- distance(
model.matrix(~., denominator_small),
model.matrix(~., numerator_small)
) |> kernel_gaussian(2)
expect_equal(solve(crossprod(Kde)/nrow(Kde) + 0.1 * diag(ncol(Kde)), colMeans(Knu)), dr$alpha_opt)
})
test_that("ULSIF estimation functions work", {
Dnu <- distance(
model.matrix(~., numerator_small),
model.matrix(~., numerator_small)
)
Dde <- distance(
model.matrix(~., denominator_small),
model.matrix(~., numerator_small)
)
ulsif_out <- compute_ulsif(
Dnu,
Dde,
sigma = 2,
lambda = 0.1,
parallel = FALSE,
nthreads = 1,
progressbar = FALSE
)
expect_length(ulsif_out, 2)
expect_type(ulsif_out$alpha, "double")
expect_type(ulsif_out$loocv_score, "double")
})
test_that("set_threads works", {
expect_equal(set_threads(1), 1)
expect_warning(set_threads(50))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.