Nothing
#! Rank based Mahalanobis distance, from Paul Rosenbaum's Design of Observational Studies, p. 251
.smahal = function(z, X) {
X = as.matrix(X)
n = dim(X)[1]
rownames(X) = 1:n
k = dim(X)[2]
m = sum(z)
for (j in 1:k) X[,j] = rank(X[,j])
cv = cov(X)
vuntied = var(1:n)
#! ***PENDING: correct this
diag(cv)[diag(cv) == 0] = .01
rat = sqrt(vuntied/diag(cv))
cv = diag(rat)%*%cv%*%diag(rat)
out = matrix(NA,m,n-m)
Xc = X[z == 0, ]
Xt = X[z == 1, ]
rownames(out) = rownames(X)[z==1]
colnames(out) = rownames(X)[z==0]
#library(MASS)
icov = ginv(cv)
for (i in 1:m) {
out[i,] = mahalanobis(Xc,Xt[i,],icov,inverted=TRUE)
}
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.