R/data.R

#' @title Ratkowsky equation of development rate as a function of temperature (Shi 2016 modification).
#'
#' @description Ratkowsky, D.A., Olley, J., McMeekin, T.A., and Ball, A. (1982) Relationship between
#' temperature and growth rate of bacterial cultures. Journal of Bacteriology 149(1): 1-5.
#' @description Ratkowsky, D.A., R.K. Lowry, T.A. McMeekin, A.N. Stokes, and R.E. Chandler. 1983.
#' Model for bacterial culture growth rate throughout the entire biokinetic temperature range.
#' Journal of Bacteriology 154: 1222-1226.
#' @description Shi, P. J., Reddy, G. V., Chen, L., and Ge, F. (2015). Comparison of thermal performance
#' equations in describing temperature-dependent developmental rates of insects: (I) empirical models.
#' Annals of the Entomological Society of America, 109(2), 211-215.
#'
#' @details Equation:
#' \deqn{rT = (cc * (T - T1) * (1 - e^{k * (T - T2)}))^2}{%
#'       rT = (cc * (T - T1) * (1 - exp(k * (T - T2))))^2}
#'
#' @details where rT is the development rate, T the temperature, T1 and T2 the minimum
#' and maximum temperatures at which rate of growth is zero, cc the slope of the
#' regression as in the rootsq_82 equation, and k a constant. The Ratkowsky model designed
#' for microorganisms has been modified by Shi et al. 2016 to describe the temperature-dependent
#' development rates of insects.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/aesa/sav121}
#' @docType data
#' @keywords datasets
"ratkowsky_83"

#' @title Beta2 equation of development rate as a function of temperature.
#'
#' @description Yin, X., Kropff, M.J., McLaren, G., and Visperas, R.M. (1995) A nonlinear model for crop
#'   development as a function of temperature. Agricultural and Forest Meteorology 77(1): 1-16.
#' @description Shi, P. J., Chen, L., Hui, C., & Grissino-Mayer, H. D. (2016). Capture the time when
#' plants reach their maximum body size by using the beta sigmoid growth equation. Ecological Modelling,
#' 320, 177-181.
#' @description Shi, P. J., Reddy, G. V., Chen, L., and Ge, F. (2015). Comparison of thermal performance
#' equations in describing temperature-dependent developmental rates of insects: (I) empirical models.
#' Annals of the Entomological Society of America, 109(2), 211-215.
#'
#' @details Equation:
#' \deqn{rT = rm * (\frac{T2 - T}/{T2 - Tm}) * (\frac{T - T1}/{Tm - T1})^{\frac{Tm - T1}/{T2 - Tm}}}{%
#'       rT = rm * (T2 - T)/(T2 - Tm) * ((T - T1)/(Tm - T1))^((Tm - T1)/(T2 - Tm))}
#'
#' @details where rT is the development rate, T the temperature, T1, T2,
#' and Tm the model parameters.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/j.ecolmodel.2015.09.012}
#' @docType data
#' @keywords datasets
"beta_16"

#' @title Beta equation of development rate as a function of temperature.
#'
#' @description Yin, X., Kropff, M.J., McLaren, G., and Visperas, R.M. (1995) A nonlinear model for crop
#'   development as a function of temperature. Agricultural and Forest Meteorology 77(1): 1-16.
#'
#' @details Equation:
#' \deqn{rT = e^{mu} * (T - Tb)^{aa} * (Tc - T)^{bb}}{%
#'       rT = exp(mu) * (T - Tb)^aa * (Tc - T)^bb}
#'
#' @details where rT is the development rate, T the temperature, mu, aa,
#' and bb the model parameters, Tb the base temperature, and Tc the ceiling
#' temperature.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/0168-1923(95)02236-Q}
#' @docType data
#' @keywords datasets
"beta_95"

#' @title Performance-2 equation of development rate as a function of temperature.
#'
#' @description Shi, P., Ge, F., Sun, Y., and Chen, C. (2011) A simple model for describing the effect of
#' temperature on insect developmental rate. Journal of Asia-Pacific Entomology 14(1): 15-20.
#' @description Wang, L., P. Shi, C. Chen, and F. Xue. 2013. Effect of temperature on the development
#' of Laodelphax striatellus (Homoptera: Delphacidae). J. Econ. Entomol. 106: 107-114.
#' @description Shi, P. J., Reddy, G. V., Chen, L., and Ge, F. (2016). Comparison of Thermal
#' Performance Equations in Describing Temperature-Dependent Developmental Rates
#' of Insects:(I) Empirical Models. Annals of the Entomological Society of America, 109(2), 211-215.
#'
#' @details Equation:
#' \deqn{rT = cc * (T - T1) * (1 - e^{k * (T - T2)})}{%
#'       rT = cc * (T - T1) * (1 - exp(k * (T - T2)))}
#'
#' @details where rT is the development rate, T the temperature, T1 and T2 the conceptual
#' lower and upper developmental thresholds at which development rates equal zero,
#' and cc and k constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/j.aspen.2010.11.008}
#' @docType data
#' @keywords datasets
"perf2_11"

#' @title Root square equation of development rate as a function of temperature.
#'
#' @description Ratkowsky, D.A., Olley, J., McMeekin, T.A., and Ball, A. (1982) Relationship between
#' temperature and growth rate of bacterial cultures. Journal of Bacteriology 149(1): 1-5.
#'
#' @details Equation:
#' \deqn{rT = (bb * (T - Tb))^{2}}{%
#'       rT = (bb * (T - Tb))^2}
#'
#' @details where rT is the development rate, T the temperature, bb the slope of the
#' regression line, and Tb a conceptual temperature of no metabolic significance.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1128/jb.149.1.1-5.1982}
#' @docType data
#' @keywords datasets
"rootsq_82"

#' @title Wang and Engel equation of development rate as a function of temperature.
#'
#' @description Wang, E., and Engel, T. (1998) Simulation of phenological development of wheat crops.
#' Agricultural systems 58(1): 1-24.
#'
#' @details Equation:
#' \deqn{rT = \frac{2 * (T - Tmin)^{aa} * (Topt - Tmin)^{aa} - (T - Tmin)^{2 * aa}}{(Topt - Tmin)^{2 * aa}}}{%
#'       rT = (2 * (T - Tmin)^aa * (Topt - Tmin)^aa - (T - Tmin)^(2 * aa)) / ((Topt - Tmin)^(2 * aa))}
#'
#' @details where rT is the development rate, T the temperature, Tmin the minimum temperature,
#' Topt the optimum temperature, and aa a constant.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/S0308-521X(98)00028-6}
#' @docType data
#' @keywords datasets
"wangengel_98"

#' @title Ratkowsky equation of development rate as a function of temperature (Shi modification).
#'
#' @description Ratkowsky, D.A., Olley, J., McMeekin, T.A., and Ball, A. (1982) Relationship between
#' temperature and growth rate of bacterial cultures. Journal of Bacteriology 149(1): 1-5.
#' @description Ratkowsky, D.A., R.K. Lowry, T.A. McMeekin, A.N. Stokes, and R.E. Chandler. 1983.
#' Model for bacterial culture growth rate throughout the entire biokinetic temperature range.
#' Journal of Bacteriology 154: 1222-1226.
#' @description Shi, P., Ge, F., Sun, Y., and Chen, C. (2011) A simple model for describing the effect of
#' temperature on insect developmental rate. Journal of Asia-Pacific Entomology 14(1): 15-20.
#'
#' @details Equation:
#' \deqn{rT = (\sqrt{cc} * k1 * (T - T1) * (1 - e^{k2 * (T - T2)}))^{2}}{%
#'       rT = (sqrt(cc) * k1 * (T - T1) * (1 - exp(k2 * (T - T2))))^2}
#'
#' @details where rT is the development rate, T the temperature, T1 and T2 the minimum
#' and maximum temperatures at which rate of growth is zero, sqrt(cc) * k1 the slope of the
#' regression as in the rootsq_82 equation, and k2 a constant. The Ratkowsky model designed
#' for microorganisms has been modified by Shi et al. 2011 to describe the temperature-dependent
#' development rates of insects.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1128/jb.149.1.1-5.1982}
#' @references \doi{10.1128/jb.154.3.1222-1226.1983}
#' @docType data
#' @keywords datasets
"ratkowsky_82"

#' @title Regniere equation of development rate as a function of temperature.
#'
#' @description Regniere, J., Powell, J., Bentz, B., and Nealis, V. (2012) Effects of temperature on
#' development, survival and reproduction of insects: experimental design, data analysis
#' and modeling. Journal of Insect Physiology 58(5): 634-47.
#'
#' @details Equation:
#' \deqn{rT = phi * (e^{bb * (T - Tb)} - \frac{Tm - T}{Tm - Tb} * e^{-bb * \frac{T - Tb}{deltab}} - \frac{T - Tb}{Tm - Tb} * e^{\frac{bb * (Tm - Tb) - (Tm - T)}{deltam}})}{%
#'       rT = phi * (exp(bb * (T - Tb)) - ((Tm - T) / (Tm - Tb)) * exp(-bb * (T - Tb) / deltab) - ((T - Tb)/(Tm - Tb)) * exp(bb * (Tm - Tb) - (Tm - T)/deltam))}
#'
#' @details where rT is the development rate, T the temperature, Tb the minimum
#' temperature, Tm the maximum temperature and phi, bb, deltab,
#' and deltam constants (see source for more details).
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/j.jinsphys.2012.01.010}
#' @docType data
#' @keywords datasets
"regniere_12"

#' @title Shi equation of development rate as a function of temperature.
#'
#' @description Shi, P., Ge, F., Sun, Y., and Chen, C. (2011) A simple model for describing the effect of
#' temperature on insect developmental rate. Journal of Asia-Pacific Entomology 14(1): 15-20.
#'
#' @details Equation:
#' \deqn{rT = cc * (1 - e^{-k1 * (T - T1)}) * (1 - e^{k2 * (T - T2)})}{%
#'       rT = cc * (1 - exp(-k1 * (T - T1))) * (1 - exp(k2 * (T - T2)))}
#'
#' @details where rT is the development rate, T the temperature, T1 and T2 the conceptual
#' lower and upper developmental thresholds at which development rates equal zero,
#' and cc k1, and k2 constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/j.aspen.2010.11.008}
#' @docType data
#' @keywords datasets
"shi_11"

# #' @title Hansen equation of development rate as a function of temperature.
# #'
# #' @description Hansen, E.M., Bentz, B.J., Powell, J.A., Gray, D.R., and Vandygriff, J.C. (2011) Prepupal
# #' diapause and instar IV developmental rates of the spruce beetle, Dendroctonus rufipennis
# #' (Coleoptera: Curculionidae, Scolytinae). Journal of insect physiology 57(10): 1347-57.
# #'
# #' @details Equation:
# #' rT ~ p2 * ( (exp(p3 * (T - p1)) - 1) * (exp(p3 * (p5 - p1)) - 1) * exp((T - p5) / p4) )
# #'
# #' @details where rT is the development rate, T the temperature, p1 the lower developmental
# #' treshold, p2 the peak rate control parameter, p3 the low temperature acceleration of
# #' rates, p4 the width of upper thermal boundary layer, and p5 the upper developmental
# #' threshold.
# #'
# #' @format A list of eight elements describing the equation.
# #' \describe{
# #'   \item{eq}{The equation (formula object).}
# #'   \item{eqAlt}{The equation (string).}
# #'   \item{name}{The name of the equation.}
# #'   \item{ref}{The equation reference.}
# #'   \item{refShort}{The equation reference shortened.}
# #'   \item{startVal}{The parameters found in the literature with their references.}
# #'   \item{com}{An optional comment about the equation use.}
# #'   \item{id}{An id to identify the equation.}
# #' }
# #' @references \doi{10.1016/j.jinsphys.2011.06.011}
# "hansen_11"

#' @title Janisch equation of development rate as a function of temperature (Analytis modification).
#'
#' @description Janisch, E. (1932) The influence of temperature on the life-history of insects.
#' Transactions of the Royal Entomological Society of London 80(2): 137-68.
#' @description Analytis, S. (1977) Uber die Relation zwischen biologischer Entwicklung und
#' Temperatur bei phytopathogenen Pilzen. Journal of Phytopathology 90(1): 64-76.
#' @description Analytis, S. (1981). Relationship between temperature and development
#' times in phytopathogenic fungus and in plant pests: a mathematical model. Agric.
#' Res.(Athens), 5, 133-159.
#' @description Kontodimas, D.C., Eliopoulos, P.A., Stathas, G.J. and Economou, L.P. (2004) Comparative
#' temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus
#' (Boheman)(Coleoptera: Coccinellidae) preying on Planococcus citri
#' (Risso)(Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models
#' using specific criteria. Environmental Entomology 33(1): 1-11.
#'
#' @details Equation:
#' \deqn{rT = (\frac{Dmin}{2} * (e^{aa*(T - Topt)} + e^{-bb*(T - Topt)}))^{-1}}{%
#'       rT = (Dmin/2 * (exp(aa*(T - Topt)) + exp(-bb*(T - Topt))))^(-1)}
#'
#' @details where rT is the development rate, T the temperature, Topt the optimum temperature,
#' Dmin, aa, and bb constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1111/j.1365-2311.1932.tb03305.x}
#' @docType data
#' @keywords datasets
"janisch_32"

#' @title Davidson equation of development rate as a function of temperature.
#'
#' @description Davidson, J. (1944). On the relationship between temperature and rate of development of insects
#' at constant temperatures. The Journal of Animal Ecology:26-38. <doi:10.2307/1326>
#'
#' @details Equation:
#' \deqn{rT = \frac{K}{1 + e^{aa + bb * T}}}{%
#'       rT = K / (1 + exp(aa + bb * T))}
#'
#' @details where rT is the development rate, T the temperature, K the distance between
#' the upper and lower asymptote of the curve, aa the relative position of the origin of
#' the curve on the abscissa, bb the degree of acceleration of development of the life stage
#' in relation to temperature.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @docType data
#' @keywords datasets
"davidson_44"

#' @title Campbell et al. equation of development rate as a function of temperature.
#'
#' @description Campbell, A., Frazer, B. D., Gilbert, N. G. A. P., Gutierrez, A. P., & Mackauer, M. (1974).
#' Temperature requirements of some aphids and their parasites. Journal of applied ecology, 431-438. <doi:10.2307/2402197>
#'
#' @details Equation:
#' \deqn{rT = aa + bb * T}{%
#'       rT = aa + bb * T}
#'
#' @details where rT is the development rate, T the temperature, bb the slope, and aa
#' the point at which the line crosses the rT axis when T = 0.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @docType data
#' @keywords datasets
"campbell_74"

#' @title Stinner et al equation of development rate as a function of temperature.
#'
#' @description Stinner, R., Gutierrez, A. & Butler, G. (1974) An algorithm for temperature-dependent growth
#' rate simulation. The Canadian Entomologist, 106, 519-524.
#'
#' @details Equation:
#' \deqn{rT = \frac{C}{1 + e^{k1 + k2 * T}}}{%
#'       rT = C / (1 + exp(k1 + k2 * T))}
#' and
#' \deqn{rT = \frac{C}{1 + e^{k1 + k2 * (2 * Topt - T)}}}{%
#'       rT = C / (1 + exp(k1 + k2 * (2 * Topt - T)))}
#'
#' @details where rT is the development rate, T the temperature, Topt the optimum temperature,
#' k1 and k2 constants. "[...] the relationship [is] inverted when the temperature is above an
#' optimum [...] T = 2 * Topt - T for T >= Topt." Stinner et al. 1974.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.4039/Ent106519-5}
#' @docType data
#' @keywords datasets
"stinner_74"

#' @title Logan et al. equation 6 of development rate as a function of temperature.
#'
#' @description Logan, J. A., Wollkind, D. J., Hoyt, S. C., and Tanigoshi, L. K. (1976). An analytic model
#' for description of temperature dependent rate phenomena in arthropods. Environmental
#' Entomology, 5(6), 1133-1140.
#'
#' @details Equation:
#' \deqn{rT = phi * (e^{bb * T} - e^{bb * Tmax - \frac{Tmax - T}{deltaT}})}{%
#'       rT = phi * (exp(bb * T) - exp(bb * Tmax - (Tmax - T)/deltaT))}
#'
#' @details where rT is the development rate, T the temperature, Tmax the maximum temperature,
#' deltaT the width of the high temperature boundary layer, phi the developmental rate at some
#' base temperature above developmental threshold, and bb a constant.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/ee/5.6.1133}
#' @docType data
#' @keywords datasets
"logan6_76"

#' @title Logan et al. equation 10 of development rate as a function of temperature.
#'
#' @description Logan, J. A., Wollkind, D. J., Hoyt, S. C., and Tanigoshi, L. K. (1976). An analytic model
#' for description of temperature dependent rate phenomena in arthropods. Environmental
#' Entomology, 5(6), 1133-1140.
#'
#' @details Equation:
#' \deqn{rT = alpha * (\frac{1}{1 + cc * e^{- bb * T}} - e^{-\frac{Tmax - T}{deltaT}})}{%
#'       rT = alpha * (1/(1 + cc * exp(- bb * T)) - exp(-((Tmax - T)/deltaT)))}
#'
#' @details where rT is the development rate, T the temperature, Tmax the maximum temperature,
#' deltaT the width of the high temperature boundary layer, and alpha and bb constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/ee/5.6.1133}
#' @docType data
#' @keywords datasets
"logan10_76"

#' @title Sharpe and DeMichele equation of development rate as a function of temperature.
#'
#' @description Sharpe, P.J. & DeMichele, D.W. (1977) Reaction kinetics of poikilotherm development.
#' Journal of Theoretical Biology, 64, 649-670.
#'
#' @details Equation:
#' \deqn{rT = \frac{(T + 273.16) * e^{\frac{aa - \frac{bb}{T + 273.16}}{1.987}}}{1 + e^{\frac{cc - \frac{dd}{T + 273.16}}{1.987}} + e^{\frac{ff - \frac{gg}{T + 273.16}}{1.987}}}}{%
#'       rT = ((T + 273.16) * exp((aa - bb/(T + 273.16))/1.987)) / (1 + exp((cc - dd/(T + 273.16))/1.987) + exp((ff - gg/(T + 273.16))/1.987))}
#'
#' @details where rT is the development rate, T the temperature, and aa, bb, cc,
#' dd, ff, and gg thermodynamic parameters.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/0022-5193(77)90265-X}
#' @docType data
#' @keywords datasets
"sharpeDeMichele_77"

#' @title Analytis equation of development rate as a function of temperature.
#'
#' @description Analytis, S. (1977) Uber die Relation zwischen biologischer Entwicklung und Temperatur bei
#' phytopathogenen Pilzen. Journal of Phytopathology 90(1): 64-76.
#'
#' @details Equation:
#' \deqn{rT = aa * (T - Tmin)^{bb} * (Tmax - T)^{cc}}{%
#'       rT = aa * (T - Tmin)^bb * (Tmax - T)^cc}
#'
#' @details where rT is the development rate, T the temperature, Tmin the minimum
#' temperature, Tmax the maximum temperature, and aa, bb, and cc constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1111/j.1439-0434.1977.tb02886.x}
#' @docType data
#' @keywords datasets
"analytis_77"

#' @title Schoolfield et al. equation of development rate as a function of temperature.
#'
#' @description Schoolfield, R., Sharpe, P. & Magnuson, C. (1981) Non-linear regression of biological
#' temperature-dependent rate models based on absolute reaction-rate theory.
#' Journal of theoretical biology, 88, 719-731.
#'
#' @details Equation:
#' \deqn{rT = \frac{p25 * \frac{T + 273.16}{298} * e^{\frac{aa}{1.987} * (\frac{1}{298} - \frac{1}{T + 273.16})}}{1 + e^{\frac{bb}{1.987} * (\frac{1}{cc} - \frac{1}{T + 273.16})} + e^{\frac{dd}{1.987} * (\frac{1}{ee} - \frac{1}{T + 273.16})}}}{%
#'       rT = (p25 * (T + 273.16)/298 * exp(aa/1.987 * (1/298 - 1/(T + 273.16)))) / (1 + exp(bb/1.987 * (1/cc - 1/(T + 273.16))) + exp(dd/1.987 * (1/ee - 1/(T + 273.16))))}
#'
#' @details where rT is the development rate, T the temperature, p25 the development
#' rate at 25 degree Celsius assuming no enzyme inactivation, aa the enthalpy of
#' activation of the reaction that is catalyzed by the enzyme, bb the change in
#' enthalpy associated with low temperature inactivation of the enzyme, cc the
#' temperature at which the enzyme is 1/2 active and 1/2 low temperature inactive,
#' dd the change in enthalpy associated with high temperature inactivation of the enzyme,
#' and ee the temperature at which the enzyme is 1/2 active and 1/2 high temperature
#' inactive.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/0022-5193(81)90246-0}
#' @docType data
#' @keywords datasets
"schoolfield_81"

#' @title Schoolfield et al. equation of development rate as a function of temperature for
#' intermediate to high temperatures only.
#'
#' @description Schoolfield, R., Sharpe, P. & Magnuson, C. (1981) Non-linear regression of biological
#' temperature-dependent rate models based on absolute reaction-rate theory.
#' Journal of theoretical biology, 88, 719-731.
#' Wagner, T.L., Wu, H.I., Sharpe, P.S.H., Schoolfield, R.M., Coulson, R.N. (1984) Modeling
#' insect development rates: a literature review and application of a biophysical model.
#' Annals of the Entomological Society of America 77(2): 208-20.
#'
#' @details Equation:
#' \deqn{rT = \frac{p25 * \frac{T + 273.16}{298} * e^{\frac{aa}{1.987} * (\frac{1}{298} - \frac{1}{T + 273.16})}}{1 + e^{\frac{dd}{1.987} * (\frac{1}{ee} - \frac{1}{T + 273.16})}}}{%
#'       rT = (p25 * (T + 273.16)/298 * exp(aa/1.987 * (1/298 - 1/(T + 273.16)))) / (1 + exp(dd/1.987 * (1/ee - 1/(T + 273.16))))}
#'
#' @details where rT is the development rate, T the temperature, p25 the development
#' rate at 25 degrees Celsius assuming no enzyme inactivation, aa the enthalpy of
#' activation of the reaction that is catalyzed by the enzyme, bb the change in
#' enthalpy associated with low temperature inactivation of the enzyme, cc the
#' the temperature at which the enzyme is 1/2 active and 1/2 low temperature inactive,
#' dd the cange in enthalpy associated with high temperature inactivation of the enzyme,
#' and ee the temperature at which the enzyme is 1/2 active and 1/2 high temperature
#' inactive.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/0022-5193(81)90246-0}
#' @docType data
#' @keywords datasets
"schoolfieldHigh_81"

#' @title Schoolfield et al. equation of development rate as a function of temperature for
#' intermediate to low temperatures only.
#'
#' @description Schoolfield, R., Sharpe, P. & Magnuson, C. (1981) Non-linear regression of biological
#' temperature-dependent rate models based on absolute reaction-rate theory.
#' Journal of theoretical biology, 88, 719-731.
#' Wagner, T.L., Wu, H.I., Sharpe, P.S.H., Schoolfield, R.M., Coulson, R.N. (1984) Modeling
#' insect development rates: a literature review and application of a biophysical model.
#' Annals of the Entomological Society of America 77(2): 208-20.
#'
#' @details Equation:
#' \deqn{rT = \frac{p25 * \frac{T + 273.16}{298} * e^{\frac{aa}{1.987} * (\frac{1}{298} - \frac{1}{T + 273.16})}}{1 + e^{\frac{bb}{1.987} * (\frac{1}{cc} - \frac{1}{T + 273.16})}}}{%
#'       rT = (p25 * (T + 273.16)/298 * exp(aa/1.987 * (1/298 - 1/(T + 273.16)))) / (1 + exp(bb/1.987 * (1/cc - 1/(T + 273.16))))}
#'
#' @details where rT is the development rate, T the temperature, p25 the development
#' rate at 25 degrees Celsius assuming no enzyme inactivation, aa the enthalpy of
#' activation of the reaction that is catalyzed by the enzyme, bb the change in
#' enthalpy associated with low temperature inactivation of the enzyme, cc the
#' the temperature at which the enzyme is 1/2 active and 1/2 low temperature inactive,
#' dd the cange in enthalpy associated with high temperature inactivation of the enzyme,
#' and ee the temperature at which the enzyme is 1/2 active and 1/2 high temperature
#' inactive.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1016/0022-5193(81)90246-0}
#' @docType data
#' @keywords datasets
"schoolfieldLow_81"

#' @title Taylor equation of development rate as a function of temperature.
#'
#' @description Taylor, F. (1981) Ecology and evolution of physiological time in insects.
#' American Naturalist, 1-23.
#' @description Lamb, RJ. (1992) Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low
#' temperatures: implications for estimating rate parameters for insects.
#' Environmental Entomology 21(1): 10-19.
#'
#' @details Equation:
#' \deqn{rT = Rm * e^{-\frac{1}{2} * (\frac{T - Tm}{To})^{2}}}{%
#'       rT = Rm * exp(-1/2 * ((T - Tm)/To)^2)}
#'
#' @details where rT is the development rate, T the temperature, Rm the maximum
#' development rate, Tm the optimum temperature, and To the rate at which development
#' rate falls away from Tm.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @docType data
#' @keywords datasets
"taylor_81"

#' @title Second-order polynomial equation of development rate as a function of temperature.
#'
#' @description A simple second-order polynomial equation.
#'
#' @details Equation:
#' \deqn{rT = a0 + a1 * T + a2 * T^{2}}{%
#'       rT = a0 + a1 * T + a2 * T^2}
#'
#' @details where rT is the development rate, T the temperature, and a0, a1, and a2 are
#' constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @docType data
#' @keywords datasets
"poly2"

#' @title Harcourt and Yee equation of development rate as a function of temperature.
#'
#' @description Harcourt, D. and Yee, J. (1982) Polynomial algorithm for predicting the duration of insect
#' life stages. Environmental Entomology, 11, 581-584.
#'
#' @details Equation:
#' \deqn{rT = a0 + a1 * T + a2 * T^{2} + a3 * T^{3}}{%
#'       rT = a0 + a1 * T + a2 * T^2 + a3 * T^3}
#'
#' @details where rT is the development rate, T the temperature, and a0, a1, a2, and a3 are
#' constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/ee/11.3.581}
#' @docType data
#' @keywords datasets
"harcourtYee_82"

#' @title Fourth-order polynomial equation of development rate as a function of temperature.
#'
#' @description A simple fourth-order polynomial equation.
#'
#' @details Equation:
#' \deqn{rT = a0 + a1 * T + a2 * T^{2} + a3 * T^{3} + a4 * T^{4}}{%
#'       rT = a0 + a1 * T + a2 * T^2 + a3 * T^3 + a4 * T^4}
#'
#' @details where rT is the development rate, T the temperature, and a0, a1, a2, a3, and a4 are
#' constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @docType data
#' @keywords datasets
"poly4"

#' @title Holling type III equation of development rate as a function of temperature.
#'
#' @description Hilbert, DW, y JA Logan (1983) Empirical model of nymphal development for the migratory
#' grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae).
#' Environmental Entomology 12(1): 1-5.
#'
#' @details Equation:
#' \deqn{rT = phi * ((\frac{(T-Tb)^{2}}{(T-Tb)^{2} + aa^{2}}) - e^{-\frac{Tmax - (T-Tb)}{deltaT}})}{%
#'       rT = phi * (((T-Tb)^2 / ((T-Tb)^2 + aa^2)) - exp(-(Tmax - (T-Tb))/deltaT))}
#'
#' @details where rT is the development rate, T the temperature, Tb the minimum
#' temperature for development, deltaT the width of high temperature boundary area,
#' Tmax the maximum temperature, and aa a constant.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/ee/12.1.1}
#' @docType data
#' @keywords datasets
"hilbertLogan_83"

#' @title Lamb equation of development rate as a function of temperature.
#'
#' @description Lamb, R. J., Gerber, G. H., & Atkinson, G. F. (1984). Comparison of developmental rate curves
#' applied to egg hatching data of Entomoscelis americana Brown (Coleoptera: Chrysomelidae).
#' Environmental entomology, 13(3), 868-872.
#' @description Lamb, RJ. (1992) Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low
#' temperatures: implications for estimating rate parameters for insects.
#' Environmental Entomology 21(1): 10-19.
#'
#' @details Equation:
#' \deqn{rT = Rm * e^{-\frac{1}{2} * (\frac{T - Tmax}{To})^{2}}}{%
#'       rT = Rm * exp(-1/2 * ((T - Tmax)/To)^2)}
#' and
#' \deqn{rT = Rm * e^{-\frac{1}{2} * (\frac{T - Tmax}{T1})^{2}}}{%
#'       rT = Rm * exp(-1/2 * ((T - Tmax)/T1)^2)}
#'
#' @details where rT is the development rate, T the temperature, Rm the maximum
#' development rate, Tmax the optimum temperature, and To and T1 the shape parameter giving
#' the spread of the curve.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/ee/21.1.10}
#' @docType data
#' @keywords datasets
"lamb_92"

#' @title Lactin et al. equation 1 of development rate as a function of temperature.
#'
#' @description Lactin, Derek J, NJ Holliday, DL Johnson, y R Craigen (995) Improved rate model of
#' temperature-dependent development by arthropods. Environmental Entomology 24(1): 68-75.
#'
#' @details Equation:
#' \deqn{rT = e^{aa * T} - e^{aa * Tmax - \frac{Tmax - T}{deltaT}}}{%
#'       rT = exp(aa * T) - exp(aa * Tmax - (Tmax - T)/deltaT)}
#'
#' @details where rT is the development rate, T the temperature, and aa, Tmax,
#' and deltaT fitted parameters.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/ee/24.1.68}
#' @docType data
#' @keywords datasets
"lactin1_95"

#' @title Lactin et al. equation 2 of development rate as a function of temperature.
#'
#' @description Lactin, Derek J, NJ Holliday, DL Johnson, y R Craigen (995) Improved rate model of
#' temperature-dependent development by arthropods. Environmental Entomology 24(1): 68-75.
#'
#' @details Equation:
#' \deqn{rT = e^{aa * T} - e^{aa * Tmax - \frac{Tmax - T}{deltaT}} + bb}{%
#'       rT = exp(aa * T) - exp(aa * Tmax - (Tmax - T)/deltaT) + bb}
#'
#' @details where rT is the development rate, T the temperature, and aa, bb, Tmax,
#' and deltaT fitted parameters.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/ee/24.1.68}
#' @docType data
#' @keywords datasets
"lactin2_95"

#' @title Briere et al equation 1 of development rate as a function of temperature.
#'
#' @description Briere, J.F., Pracros, P., le Roux, A.Y. and Pierre, S. (1999) A novel rate model of
#' temperature-dependent development for arthropods. Environmental Entomology, 28, 22-29.
#'
#' @details Equation:
#' \deqn{rT = aa * T * (T - Tmin) * (Tmax - T)^{\frac{1}{2}}}{%
#'       rT = aa * T * (T - Tmin) * (Tmax - T)^(1 / 2)}
#'
#' @details where rT is the development rate, T the temperature, Tmin the low
#' temperature developmental threshold, Tmax the lethal temperature, and aa
#' an empirical constant.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/ee/28.1.22}
#' @docType data
#' @keywords datasets
"briere1_99"

#' @title Briere et al equation 2 of development rate as a function of temperature.
#'
#' @description Briere, J.F., Pracros, P., le Roux, A.Y. and Pierre, S. (1999) A novel rate model of
#' temperature-dependent development for arthropods. Environmental Entomology, 28, 22-29.
#'
#' @details Equation:
#' \deqn{rT = aa * T * (T - Tmin) * (Tmax - T)^{\frac{1}{bb}}}{%
#'       rT = aa * T * (T - Tmin) * (Tmax - T)^(1 / bb)}
#'
#' @details where rT is the development rate, T the temperature, Tmin the low
#' temperature developmental threshold, Tmax the lethal temperature, and aa and
#' bb empirical constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/ee/28.1.22}
#' @docType data
#' @keywords datasets
"briere2_99"

#' @title Kontodimas et al. equation of development rate as a function of temperature.
#'
#' @description Kontodimas, D.C., Eliopoulos, P.A., Stathas, G.J. and Economou, L.P. (2004) Comparative
#' temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus
#' (Boheman)(Coleoptera: Coccinellidae) preying on Planococcus citri
#' (Risso)(Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models
#' using specific criteria. Environmental Entomology 33(1): 1-11.
#'
#' @details Equation:
#' \deqn{rT = aa * (T - Tmin)^{2} * (Tmax - T)}{%
#'       rT = aa * (T - Tmin)^2 * (Tmax - T)}
#'
#' @details where rT is the development rate, T the temperature, Tmin the minimum
#' temperature, Tmax the maximum temperature, and aa a constant.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \url{https://academic.oup.com/ee/article/33/1/1/477793/}
#' @docType data
#' @keywords datasets
"kontodimas_04"

#' @title Simplified beta type equation of development rate as a function of temperature.
#'
#' @description Damos, P.T., and Savopoulou-Soultani, M. (2008). Temperature-dependent bionomics and modeling
#' of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory.
#' Journal of economic entomology, 101(5), 1557-1567.
#'
#' @details Equation:
#' \deqn{rT = aa * (bb - \frac{T}{10}) * (\frac{T}{10})^{cc}}{%
#'       rT = aa * (bb - T / 10) * (T / 10)^cc}
#'
#' @details where rT is the development rate, T the temperature, and aa, bb, and
#' cc empirical constant parameters.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1093/jee/101.5.1557}
#' @docType data
#' @keywords datasets
"damos_08"

#' @title Inverse second-order polynomial equation of development rate as a function of temperature.
#'
#' @description Damos, P., and Savopoulou-Soultani, M. (2011) Temperature-driven models for insect
#' development and vital thermal requirements. Psyche: A Journal of Entomology, 2012.
#'
#' @details Equation:
#' \deqn{rT = \frac{aa}{1 + bb * T + cc * T^{2}}}{%
#'       rT = aa / (1 + bb * T + cc * T^2)}
#'
#' @details where rT is the development rate, T the temperature, and aa, bb, and
#' cc empirical constant parameters.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1155/2012/123405}
#' @docType data
#' @keywords datasets
"damos_11"

#' @title Wang et al. equation of development rate as a function of temperature.
#'
#' @description Wang, R., Lan, Z. and Ding, Y. (1982) Studies on mathematical models of the relationship
#' between insect development and temperature. Acta Ecol. Sin, 2, 47-57.
#'
#' @details Equation:
#' \deqn{rT = \frac{K}{1 + e^{-r*(T - T0)}} * (1 - e^{-\frac{T - TL}{aa}}) * (1 - e^{-\frac{TH - T}{aa}})}{%
#'       rT = (K / (1 + exp(-r*(T - T0)))) * (1 - exp(-(T - TL)/aa)) * (1 - exp(-(TH - T)/aa))}
#'
#' @details where rT is the development rate, T the temperature, and K, r, T0, TH, and TL constants.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \url{http://en.cnki.com.cn}
#' @docType data
#' @keywords datasets
"wang_82"

#' @title Bayoh and Lindsay equation of development rate as a function of temperature.
#'
#' @description Bayoh, M.N., Lindsay, S.W. (2003) Effect of temperature on the development of the aquatic
#' stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bulletin of entomological
#' research 93(5): 375-81.
#'
#' @details Equation:
#' \deqn{rT = aa + bb * T + cc * e^{T} + dd * e^{-T}}{%
#'       rT = aa + bb * T + cc * exp(T) + dd * exp(-T)}
#'
#' @details where rT is the development rate, T the temperature, and aa, bb,
#' cc, and dd empirical constant parameters.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \doi{10.1079/BER2003259}
#' @docType data
#' @keywords datasets
"bayoh_03"

#' @title Hagstrum et Milliken equation of development rate as a function of temperature retrieved
#' from Wagner 1984.
#'
#' @description Hagstrum, D.W., Milliken, G.A. (1988) Quantitative analysis of temperature, moisture, and
#' diet factors affecting insect development. Annals of the Entomological Society of America
#' 81(4): 539-46.
#' @description Wagner, T.L., Wu, H.I., Sharpe, P.S.H., Schoolfield, R.M., Coulson, R.N. (1984) Modeling
#' insect development rates: a literature review and application of a biophysical model.
#' Annals of the Entomological Society of America 77(2): 208-20.
#'
#' @details Equation:
#' \deqn{rT = \frac{1}{\frac{1 + e^{\frac{cc}{1.987} * (\frac{1}{dd} - \frac{1}{T + 273.16})}}{aa*\frac{T + 273.16}{298.15}*e^{\frac{bb}{1.987}*(\frac{1}{298.15} - \frac{1}{T + 273.16})}}}}{%
#'       rT = 1/( (1 + exp((cc/1.987) * ((1/dd) - (1/(T + 273.16))) )) / (aa * (T + 273.16)/298.15 * exp( (bb/1.987) * ((1/298.15) - 1/(T + 273.16)) ) ) )}
#'
#' @details where rT is the development rate, T the temperature, and aa, bb, cc,
#' and dd are thermodynamic parameters.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#'
#' @references \doi{10.1093/aesa/77.2.208}
#' @references \doi{10.1093/aesa/81.4.539}
#' @docType data
#' @keywords datasets
"wagner_88"

#' @title Bieri equation 1 of development rate as a function of temperature.
#'
#' @description Bieri, M., Baumgartner, J., Bianchi, G., Delucchi, V., Arx, R. von. (1983)
#' Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as
#' affected by constant temperatures and by pea varieties. Mitteilungen der
#' Schweizerischen Entomologischen Gesellschaft, 56, 163-171.
#' @description Kumar, S., and Kontodimas, D.C. (2012). Temperature-dependent
#' development of Phenacoccus solenopsis under laboratory conditions.
#' Entomologia Hellenica, 21, 25-38.
#'
#' @details Equation:
#' \deqn{rT = aa * (T - Tmin) - (bb * e^{T - Tm})}{%
#'       rT = aa * (T - Tmin) - (bb * exp(T - Tm))}
#'
#' @details where rT is the development rate, T the temperature, Tmin the minimum
#' temperature, and aa, bb, and Tm fitted coefficients.
#'
#' @format A list of eight elements describing the equation.
#' \describe{
#'   \item{eq}{The equation (formula object).}
#'   \item{eqAlt}{The equation (string).}
#'   \item{name}{The name of the equation.}
#'   \item{ref}{The equation reference.}
#'   \item{refShort}{The equation reference shortened.}
#'   \item{startVal}{The parameters found in the literature with their references.}
#'   \item{com}{An optional comment about the equation use.}
#'   \item{id}{An id to identify the equation.}
#' }
#' @references \url{http://www.e-periodica.ch}
#' @docType data
#' @keywords datasets
"bieri1_83"

#' The list of all available equations of development rate as a function of temperature.
"devRateEqList"

#' Default starting values for each equation listed in the devRateEqList object.
"devRateEqStartVal"

Try the devRate package in your browser

Any scripts or data that you put into this service are public.

devRate documentation built on Aug. 24, 2023, 9:07 a.m.