Nothing
#main author: Kévin Allan Sales Rodrigues
#### medida de influencia
#' Calculate Likelihood Displacement
#'
#' @param model Object returned from regL1 representing the fit of the L1 model.
#'
#' @returns
#' \item{Likelihood Displacement}{ A vector with Likelihood Displacement for each observation.}.
#'
#' @references Elian, S. N., André, C. D. S. and Narula, S. C. (2000). Influence Measure for the
#' \ifelse{html}{\out{L<sub>1</sub>}}{\eqn{L1}} regression.
#' \emph{Communications in Statistics - Theory and Methods}, \strong{29}(4), 837-849. \doi{10.1080/03610920008832518}.
#'
#' @importFrom stats model.frame
#' @export
#' @examples
#' set.seed(123)
#' x = matrix(rnorm(100), ncol = 2)
#' y = x[, 1] + x[, 2] + rlaplace(50, 0, 5)
#'
#' # Fits a linear regression L1 model
#' mod1 = regL1(y ~ x)
#' likelihoodD(mod1)
likelihoodD = function(model){
# complete model
y = as.numeric(model$y)
x = model.frame(model)[,-1]
colnames(x) <- NULL
x = as.matrix(x)
beta = as.numeric(coef(model))
lambda_mle = model$MAE
lambda_ros = model$lambda_ros
N = model$N
LD = NULL
for(i in 1:N){ # calculate statistics without ith obs
model_i = regL1(y ~ x, subset = -i)
beta_i = as.numeric(coef(model_i))
lambda_mle_i = model_i$MAE
lambda_ros_i = model_i$lambda_ros
LD_i = 2*(N*log(lambda_mle_i/lambda_mle) + abs(y[i] -t(as.matrix(cbind(1,x)[i,]))%*%as.matrix(beta_i))/lambda_mle_i -1)
LD = c(LD, LD_i)
}
plot(LD, main="Likelihood Displacement", xlab="Indices",ylab="Likelihood Displacement")
return(LD)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.