difR-package | R Documentation |
The difR package contains several methods to detect DIF in dichotomous and polytomously scored items. Both uniform and non-uniform DIF effects can be detected, using approaches that either rely on item response theory models or not. Some methods can handle more than one focal group. Missing data, however, are not analyzed and should be removed or imputed beforehand.
Methods currently available are:
Transformed Item Difficulties (TID) method (Angoff and Ford, 1973)
Breslow-Day statistics (Breslow and Day, 1980)
Mantel-Haenszel for dichotomlous item (Holland and Thayer, 1988)
Mantel for polytomous item (Mantel, 1963)
Generalized Mantel-Haenszel (Penfield, 2001)
Standardization (Dorans and Kullick, 1986)
Breslow-Day (Aguerri et al., 2009; Penfield, 2003)
Logistic regression for dichotomlous item (Swaminathan and Rogers, 1990)
Logistic regression for polytomous item (Zumbo, 1999)
Generalized logistic regression (Magis, Raiche, Beland and Gerard, 2011)
Lasso regression (Magis, Tuerlinckx and De Boeck, 2015)
SIBTEST (Shealy and Stout) and Crossing-SIBTEST (Chalmers, 2018; Li and Stout, 1996)
Lord's chi-square test (Lord, 1980)
Raju's area (Raju, 1990)
Likelihood-ratio test (Thissen, Steinberg and Wainer, 1988)
Common cumulative odds ratio (Liu and Agresti, 1996)
Indices based on pairwise comparisons of ordinal items (Woods, 1996)
Generalized Lord's chi-square test (Kim, Cohen and Park, 1995).
The difR package is further described in Magis, Beland, Tuerlinckx and De Boeck (2010).
Package: | difR |
Type: | Package |
Version: | 6.0.0 |
Date: | 2025-05-12 |
Depends: | R (>= 3.0.0) |
Imports: | mirt, ltm, lme4, deltaPlotR |
License: | GPL |
David Magis
Data science consultant at IQVIA Belux
Brussels, Belgium
Sebastien Beland
Faculte des sciences de l'education
Universite de Montreal (Canada)
sebastien.beland@umontreal.ca
Carl F. Falk
Department of Psychology
McGill University (Canada)
carl.falk@mcgill.ca, https://www.mcgill.ca/psychology/carl-f-falk
Gilles Raiche
Universite du Quebec a Montreal
raiche.gilles@uqam.ca
Aguerri, M.E., Galibert, M.S., Attorresi, H.F. and Maranon, P.P. (2009). Erroneous detection of nonuniform DIF using the Breslow-Day test in a short test. Quality and Quantity, 43, 35-44. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11135-007-9130-2")}
Angoff, W. H., and Ford, S. F. (1973). Item-race interaction on a test of scholastic aptitude. Journal of Educational Measurement, 2, 95-106. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1745-3984.1973.tb00787.x")}
Chalmers, R. P. (2018). Improving the Crossing-SIBTEST statistic for detecting non-uniform DIF. Psychometrika, 83(2), 376–386. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-017-9583-8")}
Dorans, N. J. and Kulick, E. (1986). Demonstrating the utility of the standardization approach to assessing unexpected differential item performance on the Scholastic Aptitude Test. Journal of Educational Measurement, 23, 355-368. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1745-3984.1986.tb00255.x")}
Holland, P. W. and Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel procedure. In H. Wainer and H. I. Braun (Dirs.), Test validity. Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Kim, S.-H., Cohen, A.S. and Park, T.-H. (1995). Detection of differential item functioning in multiple groups. Journal of Educational Measurement, 32, 261-276. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1745-3984.1995.tb00466.x")}
Li, H.-H., and Stout, W. (1996). A new procedure for detection of crossing DIF. Psychometrika, 61, 647–677. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/BF02294041")}
Lord, F. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates.
Magis, D., Beland, S., Tuerlinckx, F. and De Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42, 847-862. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3758/BRM.42.3.847")}
Magis, D., Raiche, G., Beland, S. and Gerard, P. (2011). A logistic regression procedure to detect differential item functioning among multiple groups. International Journal of Testing, 11, 365–386. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/15305058.2011.602810")}
Penfield, R. D. (2001). Assessing differential item functioning among multiple groups: a comparison of three Mantel-Haenszel procedures. Applied Measurement in Education, 14, 235-259. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1207/S15324818AME1403_3")}
Penfield, R.D. (2003). Application of the Breslow-Day test of trend in odds ratio heterogeneity to the detection of nonuniform DIF. Alberta Journal of Educational Research, 49, 231-243.
Raju, N. S. (1990). Determining the significance of estimated signed and unsigned areas between two item response functions. Applied Psychological Measurement, 14, 197-207. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/014662169001400208")}
Shealy, R. and Stout, W. (1993). A model-based standardization approach that separates true bias/DIF from group ability differences and detect test bias/DTF as well as item bias/DIF. Psychometrika, 58, 159-194. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/BF02294572")}
Swaminathan, H. and Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361-370. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1745-3984.1990.tb00754.x")}
Thissen, D., Steinberg, L. and Wainer, H. (1988). Use of item response theory in the study of group difference in trace lines. In H. Wainer and H. Braun (Eds.), Test validity. Hillsdale, NJ: Lawrence Erlbaum Associates.
Other useful packages can be found in the R Psychometric task view.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.