difR-package: Collection of methods to detect dichotomous differential item...

Description Details Author(s) References See Also


The difR package contains several traditional methods to detect DIF in dichotomously scored items. Both uniform and non-uniform DIF effects can be detected, with methods relying upon item response models or not. Some methods deal with more than one focal group.

Methods currently available are:

  1. Transformed Item Difficulties (TID) method (Angoff and Ford, 1973)

  2. Mantel-Haenszel (Holland and Thayer, 1988)

  3. Standardization (Dorans and Kullick, 1986)

  4. Breslow-Day (Aguerri et al., 2009; Penfield, 2003)

  5. Logistic regression (Swaminathan and Rogers, 1990)

  6. SIBTEST (Shealy and Stout) and Crossing-SIBTEST (Chalmers, 2018; Li and Stout, 1996)

  7. Lord's chi-square test (Lord, 1980)

  8. Raju's area (Raju, 1990)

  9. Likelihood-ratio test (Thissen, Steinberg and Wainer, 1988)

  10. Generalized Mantel-Haenszel (Penfield, 2001)

  11. Generalized logistic regression (Magis, Raiche, Beland and Gerard, 2011)

  12. Generalized Lord's chi-square test (Kim, Cohen and Park, 1995).

The difR package is further described in Magis, Beland, Tuerlinckx and De Boeck (2010).


Package: difR
Type: Package
Version: 5.1
Date: 2020-05-10
Depends: R (>= 3.0.0)
Imports: mirt, ltm, lme4, deltaPlotR
License: GPL


Sebastien Beland
Collectif pour le Developpement et les Applications en Mesure et Evaluation (Cdame)
Universite du Quebec a Montreal
sebastien.beland.1@hotmail.com, http://www.cdame.uqam.ca/
David Magis
Department of Psychology, University of Liege
Research Group of Quantitative Psychology and Individual Differences, KU Leuven
David.Magis@uliege.be, http://ppw.kuleuven.be/okp/home/
Gilles Raiche
Collectif pour le Developpement et les Applications en Mesure et Evaluation (Cdame)
Universite du Quebec a Montreal
raiche.gilles@uqam.ca, http://www.cdame.uqam.ca/


Aguerri, M.E., Galibert, M.S., Attorresi, H.F. and Maranon, P.P. (2009). Erroneous detection of nonuniform DIF using the Breslow-Day test in a short test. Quality and Quantity, 43, 35-44. doi: 10.1007/s11135-007-9130-2

Angoff, W. H., and Ford, S. F. (1973). Item-race interaction on a test of scholastic aptitude. Journal of Educational Measurement, 2, 95-106. doi: 10.1111/j.1745-3984.1973.tb00787.x

Chalmers, R. P. (2018). Improving the Crossing-SIBTEST statistic for detecting non-uniform DIF. Psychometrika, 83(2), 376–386. doi: 10.1007/s11336-017-9583-8

Dorans, N. J. and Kulick, E. (1986). Demonstrating the utility of the standardization approach to assessing unexpected differential item performance on the Scholastic Aptitude Test. Journal of Educational Measurement, 23, 355-368. doi: 10.1111/j.1745-3984.1986.tb00255.x

Holland, P. W. and Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel procedure. In H. Wainer and H. I. Braun (Dirs.), Test validity. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Kim, S.-H., Cohen, A.S. and Park, T.-H. (1995). Detection of differential item functioning in multiple groups. Journal of Educational Measurement, 32, 261-276. doi: 10.1111/j.1745-3984.1995.tb00466.x

Li, H.-H., and Stout, W. (1996). A new procedure for detection of crossing DIF. Psychometrika, 61, 647–677. doi: 10.1007/BF02294041

Lord, F. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates.

Magis, D., Beland, S., Tuerlinckx, F. and De Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42, 847-862. doi: 10.3758/BRM.42.3.847

Magis, D., Raiche, G., Beland, S. and Gerard, P. (2011). A logistic regression procedure to detect differential item functioning among multiple groups. International Journal of Testing, 11, 365–386. doi: 10.1080/15305058.2011.602810

Penfield, R. D. (2001). Assessing differential item functioning among multiple groups: a comparison of three Mantel-Haenszel procedures. Applied Measurement in Education, 14, 235-259. doi: 10.1207/S15324818AME1403_3

Penfield, R.D. (2003). Application of the Breslow-Day test of trend in odds ratio heterogeneity to the detection of nonuniform DIF. Alberta Journal of Educational Research, 49, 231-243.

Raju, N. S. (1990). Determining the significance of estimated signed and unsigned areas between two item response functions. Applied Psychological Measurement, 14, 197-207. doi: 10.1177/014662169001400208

Shealy, R. and Stout, W. (1993). A model-based standardization approach that separates true bias/DIF from group ability differences and detect test bias/DTF as well as item bias/DIF. Psychometrika, 58, 159-194. doi: 10.1007/BF02294572

Swaminathan, H. and Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361-370. doi: 10.1111/j.1745-3984.1990.tb00754.x

Thissen, D., Steinberg, L. and Wainer, H. (1988). Use of item response theory in the study of group difference in trace lines. In H. Wainer and H. Braun (Eds.), Test validity. Hillsdale, NJ: Lawrence Erlbaum Associates.

See Also

Other useful packages can be found in the R Psychometric task view.

difR documentation built on July 2, 2020, 3:34 a.m.