itemRescale | R Documentation |
Rescale the item parameters from one data set to the scale of the parameters from another data set, using equal means anchoring.
itemRescale(mR, mF, items = 1:nrow(mR))
mR |
numeric: a matrix of item parameter estimates (one row per item) which constitutes the reference scale. See Details. |
mF |
numeric: a matrix of item parameter estimates (one row per item) which have to be rescaled. See Details. |
items |
a numeric vector of integer values specifying which items are used for equal means anchoring. See Details. |
The matrices mR
and mF
must have the same format as the output of the command itemParEst
and one the possible models (1PL, 2PL,
3PL or constrained 3PL). The number of columns therefore equals two, five, nine or six, respectively.
Rescaling is performed by equal means anchoring (Cook and Eignor, 1991). The items involved in the anchoring process are specified by means of their row
number in either mR
or mF
, and are passed through the items
argument.
itemRescale
primarily serves as a routine for item purification in Lord (difLord
) and Raju (difRaju
)
Generalized Lord's (difGenLord
) methods of DIF identification (Candell and Drasgow, 1988).
A matrix of the same format as mF
with the rescaled item parameters.
David Magis
Data science consultant at IQVIA Belux
Brussels, Belgium
Sebastien Beland
Faculte des sciences de l'education
Universite de Montreal (Canada)
sebastien.beland@umontreal.ca
Gilles Raiche
Universite du Quebec a Montreal
raiche.gilles@uqam.ca
Candell, G.L. and Drasgow, F. (1988). An iterative procedure for linking metrics and assessing item bias in item response theory. Applied Psychological Measurement, 12, 253–260. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/014662168801200304")}
Cook, L. L. and Eignor, D. R. (1991). An NCME instructional module on IRT equating methods. Educational Measurement: Issues and Practice, 10, 37-45.
Magis, D., Beland, S., Tuerlinckx, F. and De Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42, 847-862. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3758/BRM.42.3.847")}
itemPar1PL
, itemPar2PL
, itemPar3PL
, itemPar3PLconst
, difLord
, difRaju
,
difGenLord
## Not run:
# Loading of the verbal data
data(verbal)
attach(verbal)
# Splitting the data set into reference and focal groups
nF <- sum(Gender)
nR <- nrow(verbal)-nF
data.ref <- verbal[,1:24][order(Gender),][1:nR,]
data.focal <- verbal[,1:24][order(Gender),][(nR+1):(nR+nF),]
# Estimating item parameters in each data set with 1PL model
mR <- itemPar1PL(data.ref)
mF <- itemPar1PL(data.focal)
# Rescaling focal group item parameters, using all items for anchoring
itemRescale(mR, mF)
# Rescaling focal group item parameters, using the first 10 items for anchoring
itemRescale(mR, mF, items = 1:10)
# Estimating item parameters in each data set with 2PL model
mR <- itemPar2PL(data.ref)
mF <- itemPar2PL(data.focal)
# Rescaling focal group item parameters, using all items for anchoring
itemRescale(mR, mF)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.