Description Usage Arguments Details Value Author(s) References See Also Examples
Fits the Rasch (1PL) model and returns related item parameter estimates.
1 2 | itemPar1PL(data, engine = "ltm", discr = 1)
|
data |
numeric: the data matrix. |
engine |
character: the engine for estimating the 1PL model, either |
discr |
either |
itemPar1PL
permits to get item parameter estimates from the Rasch or 1PL model. The output is ordered such that it can be directly used
with the general itemParEst
command, as well as the methods of Lord (difLord
) and Raju (difRaju
) and
Generalized Lord's (difGenLord
) to detect differential item functioning.
The data
is a matrix whose rows correspond to the subjects and columns to the items.
Missing values are allowed but must be coded as NA
values. They are discarded for item parameter estimation.
The estimation engine is set by the engine
argument. By default (engine="ltm"
), the Rasch model is fitted using marginal maximum likelihood, by means of
the function rasch
from the ltm
package (Rizopoulos, 2006). The other option, engine="lme4"
, permits to fit the Rasch model as a generalized
linear mixed model, by means of the glmer
function of the lme4
package (Bates and Maechler, 2009).
With the "ltm"
engine, the common discrimination parameter is set equal to 1 by default. It is possible to fix another value through the argumentdiscr
.
Alternatively, this common discrimination parameter can be estimated (though not returned) by fixing discr
to NULL
. See the functionalities of
rasch
command for further details.
A matrix with one row per item and two columns, the first one with item parameter estimates and the second one with the related standard errors.
Sebastien Beland
Collectif pour le Developpement et les Applications en Mesure et Evaluation (Cdame)
Universite du Quebec a Montreal
sebastien.beland.1@hotmail.com, http://www.cdame.uqam.ca/
David Magis
Department of Psychology, University of Liege
Research Group of Quantitative Psychology and Individual Differences, KU Leuven
David.Magis@uliege.be, http://ppw.kuleuven.be/okp/home/
Gilles Raiche
Collectif pour le Developpement et les Applications en Mesure et Evaluation (Cdame)
Universite du Quebec a Montreal
raiche.gilles@uqam.ca, http://www.cdame.uqam.ca/
Bates, D. and Maechler, M. (2009). lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-31. http://CRAN.R-project.org/package=lme4
Magis, D., Beland, S., Tuerlinckx, F. and De Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42, 847-862. doi: 10.3758/BRM.42.3.847
Rizopoulos, D. (2006). ltm: An R package for latent variable modelling and item response theory analyses. Journal of Statistical Software, 17, 1–25. doi: 10.18637/jss.v017.i05
itemPar2PL
, itemPar3PL
, itemPar3PLconst
, itemParEst
, difLord
, difRaju
,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
# Loading of the verbal data
data(verbal)
# Getting item parameter estimates ('ltm' engine)
itemPar1PL(verbal[, 1:24])
# Estimating the common discrimination parameter instead
itemPar1PL(verbal[, 1:24], discr = NULL)
# Getting item parameter estimates ('lme4' engine)
itemPar1PL(verbal[, 1:24], engine = "lme4")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.