PCOA-class | R Documentation |
An S4 class to store the results of a principal coordinates analysis.
points
A numeric
matrix whose rows give the coordinates of the points
chosen to represent the dissimilarities.
eigenvalues
A numeric
vector giving the eigenvalues computed during
the scaling process.
GOF
A length-two numeric
vector.
groups
A character
vector specifying the class for each
observation.
N. Frerebeau
Other class:
BootstrapCA-class
,
BootstrapPCA-class
,
CA-class
,
MCA-class
,
MultivariateAnalysis
,
MultivariateBootstrap
,
MultivariateResults
,
MultivariateSummary
,
PCA-class
## Load data
data("iris")
## Compute euclidean distances
d <- dist(iris[, 1:4], method = "euclidean")
## Compute principal coordinates analysis
X <- pcoa(d)
## Screeplot
screeplot(X)
## Plot results
plot(X, extra_quali = iris$Species)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.