bootstrap | R Documentation |
Checks analysis with partial bootstrap resampling.
## S4 method for signature 'CA'
bootstrap(object, n = 30)
## S4 method for signature 'PCA'
bootstrap(object, n = 30)
object |
A |
n |
A non-negative |
Returns a BootstrapCA
or a BootstrapPCA
object.
N. Frerebeau
Greenacre, Michael J. Theory and Applications of Correspondence Analysis. London: Academic Press, 1984.
Lebart, L., Piron, M. and Morineau, A. Statistique exploratoire multidimensionnelle: visualisation et inférence en fouille de données. Paris: Dunod, 2006.
Lockyear, K. (2013). Applying Bootstrapped Correspondence Analysis to Archaeological Data. Journal of Archaeological Science, 40(12): 4744-4753. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.jas.2012.08.035")}.
Ringrose, T. J. (1992). Bootstrapping and Correspondence Analysis in Archaeology. Journal of Archaeological Science, 19(6): 615-629. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/0305-4403(92)90032-X")}.
## Bootstrap on CA
## Data from Lebart et al. 2006, p. 170-172
data("colours")
## Compute correspondence analysis
X <- ca(colours)
## Bootstrap (30 replicates)
Y <- bootstrap(X, n = 30)
## Not run:
## Get replicated coordinates
get_replications(Y, margin = 1)
get_replications(Y, margin = 2)
## End(Not run)
## Plot with ellipses
viz_rows(Y)
viz_tolerance(Y, margin = 1, level = c(0.68, 0.95))
viz_columns(Y)
viz_tolerance(Y, margin = 2, level = c(0.68, 0.95))
## Plot with convex hulls
viz_columns(Y)
viz_hull(Y, margin = 2)
## Bootstrap on PCA
## Compute principal components analysis
data("iris")
X <- pca(iris, sup_quali = "Species")
## Bootstrap (30 replicates)
Y <- bootstrap(X, n = 30)
## Plot with ellipses
viz_variables(Y)
viz_tolerance(Y, margin = 2, level = c(0.68, 0.95))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.