Nothing
#' Hill number of a Community
#'
#' Estimate the diversity sensu stricto, i.e. the \insertCite{Hill1973;textual}{divent}
#' number of species from abundance or probability data.
#'
#' Several estimators are available to deal with incomplete sampling.
#'
#' Bias correction requires the number of individuals.
#'
#' Estimation techniques are from \insertCite{Chao2003;textual}{divent},
#' \insertCite{Grassberger1988;textual}{divent},\insertCite{Holste1998;textual}{divent},
#' \insertCite{Bonachela2008;textual}{divent}, \insertCite{Marcon2014a;textual}{divent}
#' which is actually the max value of "ChaoShen" and "Grassberger",
#' \insertCite{Zhang2014a;textual}{divent}, \insertCite{Chao2014c;textual}{divent},
#' \insertCite{Chao2015;textual}{divent} and \insertCite{Marcon2015a;textual}{divent}.
#'
#' The `ChaoJost` estimator \insertCite{Chao2013,Chao2015}{divent} contains
#' an unbiased part concerning observed species, equal to that of
#' \insertCite{Zhang2014a;textual}{divent}, and a (biased) estimator of the remaining
#' bias based on the estimation of the species-accumulation curve.
#' It is very efficient but slow if the number of individuals is more than a few hundreds.
#'
#' The unveiled estimators rely on \insertCite{Chao2014c;textual}{divent},
#' completed by \insertCite{Marcon2015a;textual}{divent}.
#' The actual probabilities of observed species are estimated and completed by
#' a geometric distribution of the probabilities of unobserved species.
#' The number of unobserved species is estimated by the Chao1 estimator (`UnveilC`),
#' following \insertCite{Chao2014c;textual}{divent}, or by the iChao1 (`UnveiliC`)
#' or the jackknife (`UnveilJ`).
#' The `UnveilJ` estimator often has a lower bias but a greater variance
#' \insertCite{Marcon2015a}{divent}.
#' It is a good first choice thanks to the versatility of the jackknife
#' estimator of richness.
#'
#' Estimators by \insertCite{Bonachela2008;textual}{divent} and
#' \insertCite{Holste1998;textual}{divent} are rarely used.
#'
#' To estimate \eqn{\gamma} diversity, the size of a metacommunity (see
#' [metacommunity]) is unknown so it has to be set according to a rule which does
#' not ensure that its abundances are integer values.
#' Then, classical bias-correction methods do not apply.
#' Providing the `sample_coverage` argument allows applying the `ChaoShen` and
#' `Grassberger` estimators to estimate quite well the entropy.
#'
#' Diversity can be estimated at a specified level of interpolation or
#' extrapolation, either a chosen sample size or sample coverage
#' \insertCite{Chao2014}{divent}, rather than its asymptotic value.
#' See [accum_hill] for details.
#'
#' @inheritParams check_divent_args
#' @param x An object, that may be a numeric vector containing abundances or probabilities,
#' or an object of class [abundances] or [probabilities].
#' @param ... Unused.
#'
#' @returns A tibble with the site names, the estimators used and the estimated diversity.
#'
#' @references
#' \insertAllCited{}
#'
#' @examples
#' # Diversity of each community
#' div_hill(paracou_6_abd, q = 2)
#' # gamma diversity
#' div_hill(paracou_6_abd, q = 2, gamma = TRUE)
#'
#' # At 80% coverage
#' div_hill(paracou_6_abd, q = 2, level = 0.8)
#'
#' @name div_hill
NULL
#' @rdname div_hill
#'
#' @export
div_hill <- function(x, q = 1, ...) {
UseMethod("div_hill")
}
#' @rdname div_hill
#'
#' @param estimator an estimator of asymptotic diversity.
#'
#' @export
div_hill.numeric <- function(
x,
q = 1,
estimator = c("UnveilJ", "ChaoJost", "ChaoShen", "GenCov", "Grassberger",
"Marcon", "UnveilC", "UnveiliC", "ZhangGrabchak", "naive",
"Bonachela", "Holste"),
level = NULL,
probability_estimator = c("Chao2015", "Chao2013", "ChaoShen", "naive"),
unveiling = c("geometric", "uniform", "none"),
richness_estimator = c("jackknife", "iChao1", "Chao1", "naive"),
jack_alpha = 0.05,
jack_max = 10,
coverage_estimator = c("ZhangHuang", "Chao", "Turing", "Good"),
q_threshold = 10,
sample_coverage = NULL,
as_numeric = FALSE,
...,
check_arguments = TRUE) {
# Check arguments
estimator <- match.arg(estimator)
probability_estimator <- match.arg(probability_estimator)
unveiling <- match.arg(unveiling)
richness_estimator <- match.arg(richness_estimator)
coverage_estimator <- match.arg(coverage_estimator)
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
}
if (q > q_threshold) {
# Apply the naive estimator of diversity because rounding errors
# of exp_q(entropy) are greater than its bias
prob <- x / sum(x)
the_diversity <- sum(prob^q)^(1/(1 - q))
# Possible rounding error again
if (is.infinite(the_diversity)) {
# Berger Parker index
the_diversity <- 1 / max(prob)
}
if (as_numeric) {
return(the_diversity)
} else {
return(
tibble::tibble_row(
estimator = "naive",
order = q,
diversity = the_diversity
)
)
}
} else {
the_entropy <- ent_tsallis.numeric(
x,
q = q,
estimator = estimator,
level = level,
probability_estimator = probability_estimator,
unveiling = unveiling,
richness_estimator = richness_estimator,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
sample_coverage = sample_coverage,
as_numeric = FALSE,
check_arguments = FALSE
)
# Calculate diversity
the_diversity <- dplyr::mutate(
the_entropy,
diversity = exp_q(.data$entropy, q = q),
.keep = "unused"
)
# return the diversity
if (as_numeric) {
return(the_diversity$diversity)
} else {
return(the_diversity)
}
}
}
#' @rdname div_hill
#'
#' @export
div_hill.species_distribution <- function(
x,
q = 1,
estimator = c("UnveilJ", "ChaoJost", "ChaoShen", "GenCov", "Grassberger",
"Marcon", "UnveilC", "UnveiliC", "ZhangGrabchak", "naive",
"Bonachela", "Holste"),
level = NULL,
probability_estimator = c("Chao2015", "Chao2013", "ChaoShen", "naive"),
unveiling = c("geometric", "uniform", "none"),
richness_estimator = c("jackknife", "iChao1", "Chao1", "naive"),
jack_alpha = 0.05,
jack_max = 10,
coverage_estimator = c("ZhangHuang", "Chao", "Turing", "Good"),
q_threshold = 10,
gamma = FALSE,
as_numeric = FALSE,
...,
check_arguments = TRUE) {
# Check arguments
estimator <- match.arg(estimator)
probability_estimator <- match.arg(probability_estimator)
unveiling <- match.arg(unveiling)
richness_estimator <- match.arg(richness_estimator)
coverage_estimator <- match.arg(coverage_estimator)
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
}
if (q > q_threshold) {
# Apply the naive estimator of diversity because rounding errors
# of exp_q(entropy) are greater than its bias
div_hill_sites <- apply(
# Eliminate site and weight columns
x[, !colnames(x) %in% non_species_columns],
# Apply to each row
MARGIN = 1,
FUN = function(distribution) {
prob <- distribution / sum(distribution)
the_diversity <- sum(prob^q)^(1/(1 - q))
if (is.infinite(the_diversity)) {
# Berger Parker index if rounding errors
the_diversity <- 1 / max(prob)
}
}
)
if (as_numeric) {
return(div_hill_sites)
} else {
return(
# Make a tibble with site, estimator and diversity
tibble::tibble(
# Restore non-species columns
x[colnames(x) %in% non_species_columns],
estimator = estimator,
order = q,
diversity = div_hill_sites
)
)
}
} else {
# Estimate diversity and transform it into diversity
the_entropy <- ent_tsallis.species_distribution(
x,
q = q,
estimator = estimator,
level = level,
probability_estimator = probability_estimator,
unveiling = unveiling,
richness_estimator = richness_estimator,
jack_alpha = jack_alpha,
jack_max = jack_max,
coverage_estimator = coverage_estimator,
gamma = gamma,
as_numeric = as_numeric,
check_arguments = FALSE
)
# Calculate diversity
if (as_numeric) {
the_diversity = exp_q(the_entropy, q = q)
} else {
the_diversity <- dplyr::mutate(
the_entropy,
diversity = exp_q(.data$entropy, q = q),
.keep = "unused"
)
}
}
return(the_diversity)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.