View source: R/linest_compute.R
linest | R Documentation |
Compute linear estimates, i.e. L %*% beta
for a range of models. One example of
linear estimates is population means (also known as LSMEANS).
linest(object, L = NULL, ...)
## S3 method for class 'linest_class'
confint(object, parm, level = 0.95, ...)
## S3 method for class 'linest_class'
coef(object, ...)
## S3 method for class 'linest_class'
summary(object, ...)
object |
Model object |
L |
Either |
... |
Additional arguments; currently not used. |
parm |
Specification of the parameters estimates for which confidence intervals are to be calculated. |
level |
The level of the (asymptotic) confidence interval. |
confint |
Should confidence interval appear in output. |
A dataframe with results from computing the contrasts.
Søren Højsgaard, sorenh@math.aau.dk
LSmeans
, LE_matrix
## Make balanced dataset
dat.bal <- expand.grid(list(AA=factor(1:2), BB=factor(1:3), CC=factor(1:3)))
dat.bal$y <- rnorm(nrow(dat.bal))
## Make unbalanced dataset
# 'BB' is nested within 'CC' so BB=1 is only found when CC=1
# and BB=2,3 are found in each CC=2,3,4
dat.nst <- dat.bal
dat.nst$CC <-factor(c(1,1,2,2,2,2,1,1,3,3,3,3,1,1,4,4,4,4))
mod.bal <- lm(y ~ AA + BB * CC, data=dat.bal)
mod.nst <- lm(y ~ AA + BB : CC, data=dat.nst)
L <- LE_matrix(mod.nst, effect=c("BB", "CC"))
linest( mod.nst, L )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.