linest: Compute linear estimates

View source: R/linest_compute.R

linestR Documentation

Compute linear estimates

Description

Compute linear estimates, i.e. L %*% beta for a range of models. One example of linear estimates is population means (also known as LSMEANS).

Usage

linest(object, L = NULL, ...)

## S3 method for class 'linest_class'
confint(object, parm, level = 0.95, ...)

## S3 method for class 'linest_class'
coef(object, ...)

## S3 method for class 'linest_class'
summary(object, ...)

Arguments

object

Model object

L

Either NULL or a matrix with p columns where p is the number of parameters in the systematic effects in the model. If NULL then L is taken to be the p times p identity matrix

...

Additional arguments; currently not used.

parm

Specification of the parameters estimates for which confidence intervals are to be calculated.

level

The level of the (asymptotic) confidence interval.

confint

Should confidence interval appear in output.

Value

A dataframe with results from computing the contrasts.

Author(s)

Søren Højsgaard, sorenh@math.aau.dk

See Also

LSmeans, LE_matrix

Examples


## Make balanced dataset
dat.bal <- expand.grid(list(AA=factor(1:2), BB=factor(1:3), CC=factor(1:3)))
dat.bal$y <- rnorm(nrow(dat.bal))

## Make unbalanced dataset
#   'BB' is nested within 'CC' so BB=1 is only found when CC=1
#   and BB=2,3 are found in each CC=2,3,4
dat.nst <- dat.bal
dat.nst$CC <-factor(c(1,1,2,2,2,2,1,1,3,3,3,3,1,1,4,4,4,4))

mod.bal  <- lm(y ~ AA + BB * CC, data=dat.bal)
mod.nst  <- lm(y ~ AA + BB : CC, data=dat.nst)

L <- LE_matrix(mod.nst, effect=c("BB", "CC"))
linest( mod.nst, L )


doBy documentation built on Oct. 8, 2024, 1:06 a.m.